Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Để \(\frac{n+5}{n}\)là số nguyên<=>n+5 chia hết cho n<=>n chia hết cho n và 5 chia hết cho n<=>n thuộc ước của 5={-5;-1;1;5}<=> n=-5;-1;1;5
2,a:5 dư 1<=> a-1 chia hết cho 5 <=> a-1+45 chia hết cho 5 <=> a+44 chia hết cho5
a:7 dư 5 <=> a-5 chia hết cho 7 <=> a-5 +49 chia hết cho 7 <=> a+44 chia hết cho 7
=> a+44 thuộc BC(5;7)
<=> Ta có: 5=5
7=7
<=>BCNN(5;7)=5.7=35
<=>a+44=BC(5;7)=B(35)={70;105;140;175;....}
<=>a={26;61;96;131;.........}
3, gọi số cần tìm là x
<=> x=26.32=576
Lời giải:
Với $n$ nguyên, để $\frac{3n+4}{n-1}$ nguyên thì:
$3n+4\vdots n-1$
$\Rightarrow 3(n-1)+7\vdots n-1$
$\Rightarrow 7\vdots n-1$
$\Rightarrow n-1\in \left\{\pm 1; \pm 7\right\}$
$\Rightarrow n\in \left\{2; 0; 8; -6\right\}$
Thử các giá trị này của $n$ vào $\frac{6n-3}{3n+1}$ thì $n=0$ là TH duy nhất thỏa mãn $\frac{6n-3}{3n+1}$ cũng là số nguyên.
Để: \(\frac{2n-5}{n}\) có giá trị nguyên thì 2n - 5 \(⋮\)n
Vì 2n \(⋮\)n
nên 5 \(⋮\)n
=> n là ước của 5 mà n là số nguyên âm
=> n = - 1 hoặc n = - 5 thử lại cả 2 đều thỏa mãn
Vậy n = - 1; n = - 5
Đặt \(A=\frac{2n-5}{n}\)
\(\Rightarrow A=\frac{2n}{n}-\frac{5}{n}=2-\frac{5}{n}\)
Vì \(2\inℤ\)\(\Rightarrow\)Để A có giá trị nguyên thì \(5⋮n\)
\(\Rightarrow n\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Vậy \(n\in\left\{\pm1;\pm5\right\}\)
Gọi \(ƯCLN\left(n+13;n-2\right)\in d\)
\(\Rightarrow\left(n+13\right)-\left(n-2\right)⋮d\)
\(\Rightarrow15⋮d\Rightarrow d\inƯ\left(15\right)=1;3;5;15\)
\(\Rightarrow\) Để \(\frac{n+13}{n-2}\) là phân số tối giản thì \(d=1;n+13\notin3;5;15\)
\(\Rightarrow n-2\notin3;5;15\)
\(\Leftrightarrow n+13\notin15\)
Vì \(13\notin15\Rightarrow n⋮15\Rightarrow n+13\notin15\)
\(\Rightarrow n-2\notin15\)
Vì \(2\notin15\Rightarrow n⋮15\Rightarrow n-2\notin15\)
\(\Rightarrow n⋮15\) thì \(\frac{n+13}{n-2}\) là phân số tối giản
P/s:\(\notin\) là không chia hết nha bạn
(n+5)/n=1+5/n
để (n+5)/n là sô tự nhiên thì => n thuộc ước của 5
vì n là số tự nhiên =>n=1;5