K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 10

Lời giải:

Với $n$ nguyên, để $\frac{3n+4}{n-1}$ nguyên thì:

$3n+4\vdots n-1$
$\Rightarrow 3(n-1)+7\vdots n-1$

$\Rightarrow 7\vdots n-1$

$\Rightarrow n-1\in \left\{\pm 1; \pm 7\right\}$

$\Rightarrow n\in \left\{2; 0; 8; -6\right\}$

Thử các giá trị này của $n$ vào $\frac{6n-3}{3n+1}$ thì $n=0$ là TH duy nhất thỏa mãn $\frac{6n-3}{3n+1}$ cũng là số nguyên.

a, 3n−1∈Ư(12)={±1;±2;±3;±4;±6;±12}

b, 

Để phân số :2n+372n+37 có giá trị là số nguyên thì 2n+3:7

\(​​\implies\) 2n+3=7k2n+3=7k

 \(​​\implies\)  2n=7k-3

 \(​​\implies\)  n=7k−327k−32 

Vậy với mọi số nguyên n có dang 7k−327k−32 thì phân số 2n+372n+37 có giá trị là số nguyên

:))

21 tháng 2 2018

a) Để \(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n+2}\)là số nguyên . 

=> \(\frac{5}{3n+2}\)là 1 số nguyên

=> 5 chia hết cho 3n+2 .

=> 3n+2 thuộc Ư(5)=\(\left\{\pm1;\pm5\right\}\)

Từ đó, ta lập bảng   ( khúc này bn tự làm)

Vậy...

b) Để \(\frac{5}{3n+2}\)đạt giá trị lớn nhất:

=>  3n+2 đạt giá trị tự nhiên nhỏ nhất

=> 3n đạt giá trị tự nhiên nhỏ nhất

=> n là số tự nhiên nhỏ nhấ

<=> n = 0 

21 tháng 2 2018

cảm ơn bạn nha.

8 tháng 5 2018

\(=>\frac{6n-2-1}{3n-1}=>\frac{2\left(3n-1\right)}{3n-1}=2\)\(2\frac{2}{3n-1}\)

=> để 6n-1/3n-1 nguyên thì 1/3n-1 là nguyên.

=> 1 chia hết cho 3n-1

=> 3n-1 thuộc {1;-1}