Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
Câu 1:
Số ban đầu \(222...2\) (Gồm mười lăm chữ số 2)
Tổng các chữ số
\(15\times2=30\)
Khi cộng thêm các chữ số 0 vào thì tổng sẽ là 30
=> Chia hết cho 3 nhưng lại không chia hết cho 9
Vậy không còn cách nào để thêm
Câu 2:
Số đó là \(1223334444\)
Tổng các chữ số
\(1+2\times2+3\times3+4\times4=30\)
=> 1223334444 chia hết cho 3
=> Để 1223334444 là số chính phương thì 122333444 chia hết cho 9
Mà 30 thì không chia hết cho 9
Vậy 122333444 không phải là số chính phương.
1 số tự nhiên chia \(⋮\)k thì phải \(⋮\)k2
Gọi số tự nhiên gồm 15 chữ số 2 là a(a \(\in\)N)
Khi thêm các c/s 0 tùy ý vào vị trí thì tổng các c/s của a ko thay đổi và vẫn là 15 . 2=30
1 số có tổng các c/s \(⋮\)3 thì \(⋮\)3
=> Số a hay số mới phải \(⋮\)3
Giả sử có cách viết thêm các c/s 0 vào vị trí tùy ý để số mới tạo thành 1 số chính phương
=> Số mới là 1 số chính phương
=> Số mới \(⋮\)3 => số mới phải \(⋮\)9
Mà 30 ko chia hết cho 9 => số mới ko chia hết cho 9 (vô lý)
=> giả sử sai
Vậy ko có cách nào để viết thêm c/s 0 vào vị trí tùy ý để tạo thành là 1 số chính phương
Giả sử \(n^2\)là một số chính phương gồm 1 số 0 và 6 chữ số 6
Nếu \(n^2\)tận cùng bằng 0 thì nó phải tận cùng bằng 1 số chẵn chữ số 0.Mà trong số này chỉ có 1 chữ số 0 nên ko thể là số chính phương có tận cùng là chữ số 0 được.
Nếu chúng ta bỏ tất cả các số 0 ở tận cùng đi thì số còn lại tận cùng bằng 6 và cùng phải là một số chính phương
Xét 2 trường hợp : trường hợp 1
- có tận cùng là 06 thì ko phải là số chính phương vì chia hết cho 2 mà không chia hết cho 4
- có tận cùng là 66 thì ko phải là số chính phương vì chia hết cho 2 mà không chia hết cho 4
Vậy nếu \(n^2\)tận cùng bằng 6 thì số đó ko thể là số chính phương được
Vậy số có tính chất như đề bài nêu lên không thể là một số chính phương
Gọi số tự nhiên có 5 chữ số là abcde ( a ; b ; c ; d ; e là các chữ số , a khác 0)
Theo bài cho : abcde * 6 = edcba
=> edcba là số chẵn => a là chữ số chẵn
Vì số edcba có 5 chữ số nên ebcda < 100 000 => abcde * 6 < 100 000 => abcde < 16 667
=> a = 1 là chữ số lẻ. Điều này trái với điều kiện a chẵn=> Không tồn tại số tự nhiên thỏa mãn yêu cầu đề bài
Gọi số tự nhiên có 5 chữ số là: abcde (a;b;c;d;e; là các chữ số ; a khác 0 )
theo bài cho: abcde x 6 = edcba
=> edcba là số chẵn => a là chữ số chẵn
Vì Số edcba có 5 chữ số nên edcba < 100 000 => abcde x 6 < 100 000 => abcde < 16 667
=> a =1 là chữ số lẻ . Điều này trái với điều kiện a chẵn => Không tồn tại số tự nhiên thỏa mãn yêu cầu đề bài
3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9
mà 2n-n=n=>n chia hết cho 9 => đpcm