K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

Nhận xét: \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) do đó \(\frac{2}{x^2-x+1}>0\)

Ta có \(\frac{x-x^2+1}{x-x^2-1}=1+\frac{2}{x-x^2-1}=1-\frac{2}{x^2-x+1}< 1\)

15 tháng 7 2015

x.(x+4).(x-4)-(x2+1).(x2-1)

 =x.(x2-16)-(x4-1)

=x3-16x-x4+1

=-x4+x3-16x+1

15 tháng 7 2015

 

 x.(x+4).(x-4)-(x2+1).(x2-1)

 =x.(x2-16)-(x4-1)

=x3-16x-x4+1

=x4+x3-16x+1

5 tháng 7 2018

2.

Áp dụng bất đẳng thức Cauchy - schwarz ( hay còn gọi là bất đẳng thức Cosi ):

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}=\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi x = y = z = 1

1: 

Áp dụng bất đẳng thức Cô si:

\(x\left(y+\frac{x}{1+y}\right)+y\left(z+\frac{y}{1+z}\right)+z\left(x+\frac{z}{1+x}\right)\)

\(=\left(x+y+z\right)\left[\left(y+\frac{x}{1+y}\right)+\left(z+\frac{y}{1+z}\right)+\left(x+\frac{z}{1+x}\right)\right]\)

\(=1\left[\left(x+y+z\right)+\left(\frac{x}{1+y}+\frac{y}{1+z}+\frac{z}{1+x}\right)\right]\)

\(=1\left[1+\left(\frac{x+y+z}{1+y+1+z+1+x}\right)\right]\)

\(=1\left[1+\left(\frac{1}{3+\left(x+y+z\right)}\right)\right]\)

\(=1\left[1+\frac{1}{4}\right]\)

\(=1+\frac{5}{4}=\frac{9}{4}\)

Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)

5 tháng 7 2018

2. áp dạng bất đẳng thức cauchy - schwarz dạng engel

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{3^2}{3+3}=\frac{9}{6}=\frac{3}{2}\)

dấu bằng xay ra khi x=y=z=1

15 tháng 7 2018

a) \(M=x^2-6x+2018=x^2-2.x.3+9+2009\)

\(=\left(x-3\right)^2+2009\)\(\ge2009\)(Do \(\left(x-3\right)^2\ge0\))

\(\Rightarrow Min_M=2009\). Đẳng thức xảy ra <=> x=3.

b) \(N=x^2-x=x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)

\(\Rightarrow N\ge-\frac{1}{4}\) ( Do \(\left(x-\frac{1}{2}\right)^2\ge0\)\(\Rightarrow Min_N=-\frac{1}{4}\)

Đẳng thức xảy ra <=> \(x=\frac{1}{2}\).

c) \(P=\left(x-1\right)\left(x+3\right)=x^2+2x-3=x^2+2x.1+1-4\)

\(=\left(x+1\right)^2-4\ge-4\)\(\Rightarrow Min_P=-4\)

Đẳng thức xảy ra <=> \(x=-1\).

15 tháng 7 2018

a, M=x^2 - 6x + 9 +2009

      = (x-3)^2 + 2009

vì (x-3)^2 > 0 với mọi x

=> (x-3)^2 +2009 lớn hơn hoặc bằng 2009

vậy GTNN của M=2009 khi và chỉ khi x-3=0hay x=3

EM mệt lắm cô@@ ngày e chạy nhìu lắm mồ phải lên 4 tầng liềnTầng 1:We have \(C=\left(\frac{2}{x-2}+\frac{x-1}{2x-x^2}\right):\left(\frac{x+2}{x}-\frac{x-1}{x-2}\right)\)\(=\left(\frac{2x}{x\left(x-2\right)}+\frac{1-x}{x\left(x-2\right)}\right):\left(\frac{x^2-4}{x\left(x-2\right)}-\frac{x^2-x}{x\left(x-2\right)}\right)\)\(=\frac{x+1}{x\left(x-2\right)}:\frac{x-4}{x\left(x-2\right)}\)\(=\frac{x+1}{x-4}\)Tầng...
Đọc tiếp

EM mệt lắm cô@@ ngày e chạy nhìu lắm mồ phải lên 4 tầng liền

Tầng 1:We have \(C=\left(\frac{2}{x-2}+\frac{x-1}{2x-x^2}\right):\left(\frac{x+2}{x}-\frac{x-1}{x-2}\right)\)

\(=\left(\frac{2x}{x\left(x-2\right)}+\frac{1-x}{x\left(x-2\right)}\right):\left(\frac{x^2-4}{x\left(x-2\right)}-\frac{x^2-x}{x\left(x-2\right)}\right)\)

\(=\frac{x+1}{x\left(x-2\right)}:\frac{x-4}{x\left(x-2\right)}\)

\(=\frac{x+1}{x-4}\)

Tầng 2: \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\\x\ne4\end{cases}}\)

We have  \(2x^2+8x=0\)

\(\Leftrightarrow2x\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(loai\right)\\x=-4\left(tm\right)\end{cases}}\)

Put x=-4 into C we have 

\(C=\frac{-4+1}{-4-4}=\frac{3}{8}\)

So \(C=\frac{3}{8}\)if x-4

Tầng 3 @@ chân em sắp rời rồi 

Because  \(C=\frac{-1}{2}\)

Then \(\frac{x+1}{x-4}=\frac{-1}{2}\)

\(\Leftrightarrow x=\frac{2}{3}\)

Tầng 4: phù cố lên sắp lên đến đỉnh r

 \(C\in Z\Leftrightarrow x+1⋮x-4\)( em làm kiểu lớp 6 lun nha cô làm cách chia em phải vẽ lâu lắm )

\(\Leftrightarrow x-4+5⋮x-4\)

Because \(x-4⋮x-4\)

so \(5⋮x-4\)

\(\Leftrightarrow x-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Leftrightarrow x\in\left\{5;3;9;-1\right\}\left(tm\right)\)

SO...

 

 

1

M lm đg r . Nhg m lm toán ghi TV nha m. TA t đọc đc nhưng kì kì.

12 tháng 10 2020

\(\Leftrightarrow x^2+2x+3-3x^2-3x-3=\left(x^2+x+1\right)\left(x^4+x^2+1\right)\)

\(\Leftrightarrow-2x^2-x=\left(x^2+x+1\right)\left(x^4+x^2+1\right)\)

\(\Leftrightarrow-2\left(x^2+\frac{x}{2}\right)=\left(x^2+x+1\right)\left(x^4+x^2+1\right)\)

\(\Leftrightarrow-2\left(x^2+\frac{x}{2}+\frac{1}{16}\right)+\frac{1}{8}=\left(x^2+x+1\right)\left(x^4+x^2+1\right)\)

\(\Leftrightarrow\frac{1}{8}-2\left(x+\frac{1}{4}\right)^2=\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]\left[\left(x^2+\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

Vế trái của pt luôn luôn nhỏ hơn 1/8, còn vế phải luôn luôn lớn hơn 9/16=> pt vô nghiệm

17 tháng 2 2019

\(\Leftrightarrow\frac{5\left(x+5\right)-3\left(x-3\right)}{15}=\frac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)

\(\Leftrightarrow\frac{2x+34}{15}=\frac{2x+34}{x^2+2x-15}\Leftrightarrow\orbr{\begin{cases}2x+34=0\\x^2+2x-15=15\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-17\\x^2+2x-30=0\end{cases}}\)

Từ đó tìm được \(S=\left\{-17;\sqrt{31}-1;-\sqrt{31}-1\right\}\)