Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(H=\frac{1}{100}-\frac{1}{100\cdot99}-\frac{1}{99\cdot98}-...-\frac{1}{2\cdot1}\)
\(U=\frac{1}{100}-\left(\frac{1}{100\cdot99}+\frac{1}{99\cdot98}+...+\frac{1}{2\cdot1}\right)\)
\(U=\frac{1}{100}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\right)\)
\(H=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(HU=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(UH=\frac{1}{100}-1+\frac{1}{100}\)
\(HU=\frac{2}{100}-1=-\frac{49}{50}\)
Ta có:
\(\begin{array}{l}{\left( {\frac{1}{9}} \right)^5} = {[{\left( {\frac{1}{3}} \right)^2}]^5} = {(\frac{1}{3})^{2.5}} = {(\frac{1}{3})^{10}};\\{\left( {\frac{1}{{27}}} \right)^7} = {[{(\frac{1}{3})^3}]^7} = {(\frac{1}{3})^{3.7}} = {(\frac{1}{3})^{21}}\end{array}\)
Ta có: \(n\left(n+1\right)\left(n+2\right)\) chia hết cho 3.
=> \(\frac{52}{n\left(n+1\right)\left(n+2\right)}\) là stp hữu hạn.
\(\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)...\left(27-\frac{3^{100}}{2014}\right)\)
\(=\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)...\left(27-\frac{3^5}{9}\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(=\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)...\left(27-27\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(=\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)...0...\left(27-\frac{3^{2010}}{2014}\right)\)
\(=0\)
Trong tích đó có thừa số \(27-\frac{3^5}{9}=0\)
=> \(\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)...\left(27-\frac{3^{2010}}{2014}\right)=0\)
-1/7S=(-1/7)^1+(-1/7)^2+(-1/7)^3+...........+(-1/7)^2008
(-1/7)S-S=[(-1/7)^1+(-1/7)^2+........+(-1/7)^2008]-[(-1/7)^0+(-1/7)^1+.....+(-1/7)^2007]
S(-1/7-1)=(-1/7)^2008-(-1/7)^0
(-8/7)S=(-1/7)^2008-1
S=[(-1/7)^2008-1]:(-8/7)
Ta thấy: n(n + 1)(n + 2) là tích 3 số tự nhiên liên tiếp nên n(n + 1)(n + 2) chia hết cho 3
Mà 52 không chia hết cho 3
Như vậy, đến khi tối giản, mẫu số của phân số \(\frac{52}{n\left(n+1\right)\left(n+2\right)}\) có ước là 3, khác 2 và 5
Do đó, \(\frac{52}{n\left(n+1\right)\left(n+2\right)}\) có thể viết được dưới dạng số thập phân vô hạn tuần hoàn
phân số
mik quên ko ns, tính đầy đủ ra