K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2021

Không tồn tại tứ giác đó vì 2 + 3 + 4 = 9 < 10 mà tổng độ dài 3 cạnh tứ giác luôn lớn hơn cạnh còn lại.

23 tháng 7 2017

Chu vi của tam giác abc là

ab+bc+c=25                (1)

chu vi của tam giác acd là      (2)

ac+cd+da=17         (3)

chu vi của tứ giác abcd là

ab+bc+cd+da=32

từ (1) và (2) ta có :

ab+bc+ac+ac+cd+da=25+27=52

=>(ab=bc=cd=da)+2ac=52    (4)

từ (1) và (4)

<=> 32+2ac=52

=>2ac =52 - 32 =20

=>ac=20:2=10

vậy ac = 10cm

18 tháng 10 2023

Gọi độ dài hai cạnh góc vuông lần lượt là a(m),b(m)(ĐK: a>0;b>0)

Độ dài hai cạnh góc vuông tỉ lệ với 3 và 4 nên \(\dfrac{a}{3}=\dfrac{b}{4}=k\)

=>a=3k; b=4k

Theo đề, ta có: \(a^2+b^2=20^2\)

=>\(25k^2=400\)

=>\(k^2=16\)

=>k=4

=>a=3*4=12; b=4*4=16

Bài 2: 

Nếu cả bốn góc trong một tứ giác đều là góc nhọn thì tổng của bốn góc đó sẽ nhỏ hơn 360 độ(trái với định lí tổng bốn góc trong một tứ giác)

Nếu cả bốn góc trong một tứ giác đều là góc tù thì tổng của bốn góc đó sẽ lớn hơn 360 độ(trái với định lí tổng bốn góc trong một tứ giác)

Ta có đpcm

1) Xét ΔABC và ΔCDA có 

AB=CD(gt)

\(\widehat{BAC}=\widehat{DCA}\)(hai góc so le trong, AB//CD)

AC chung

Do đó: ΔABC=ΔCDA(c-g-c)

Suy ra: \(\widehat{ACB}=\widehat{CAD}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//BC(Đpcm)

5 tháng 8 2016

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{D}{4}=\frac{A+B+C+D}{1+2+3+4}=\frac{360^0}{10}=36^0\)

\(\frac{A}{1}=36^0\Rightarrow A=36^0\times1=36^0\)

\(\frac{B}{2}=36^0\Rightarrow B=36^0\times2=72^0\)

\(\frac{C}{3}=36^0\Rightarrow C=36^0\times3=108^0\)

\(\frac{D}{4}=36^0\Rightarrow D=36^0\times4=144^0\)

20 tháng 10 2023

a: Đặt \(\dfrac{AB}{5}=\dfrac{AC}{12}=k\)

=>AB=5k; AC=12k

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(25k^2+144k^2=26^2\)

=>\(k^2=4\)

=>k=2

=>AB=10cm; AC=24cm

b: Xét tứ giác ABCD có

\(\widehat{A}+\widehat{B}+\widehat{BCD}+\widehat{ADC}=360^0\)

=>\(\widehat{BCD}+\widehat{ADC}=360^0-70^0=290^0\)

=>\(2\cdot\left(\widehat{ODC}+\widehat{OCD}\right)=290^0\)

=>\(\widehat{OCD}+\widehat{ODC}=145^0\)

Xét ΔOCD có \(\widehat{COD}+\widehat{OCD}+\widehat{ODC}=180^0\)

=>\(\widehat{COD}=180^0-145^0=35^0\)

20 tháng 7 2018
Bài 3 mình làm được rồi, có phải bằng 10cm ko vậy ạ?