Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Goi day so la a; a+1; a+2; ...; a+n
Dem tung so cua day so tren chia cho n thi co 1 so chi het cho n
Goi so do la a+k (k thuoc N va k>=1 va k <=n)
=> (a+1)(a+2)...(a+k)...(a+n-1)(a+n) chia het cho n
b)Tong cua n so nguyen lien tiep khong chia het cho n vi gia su n=6 thi 1+2+3+4+5+6=21 khong chia het cho 6
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ
ta có n2+n+1=n(n+1)+1
ta thấy n và (n+1) là hai số tự nhiên liên tiếp nên tích chỉ có thể có tận cùng là 0;2;6
=> n(n+1)+1 có tận cùng là 1;3;7 không chia hết cho 5 (1)
mà 2005 chia hết cho 5 (2)
từ (1) và (2) => không có các số tự nhiên n thỏa mãn n2+n+1 chia hết cho 2005
Với n=3k+1 thì n2=(3k+1)(3k+1)=9k2+3k+3k+1
Vì 1 chia 3 dư 1 nên n2 chia 3 dư 1 (1)
Với n=3k+2 thì n2(3k+2)(3k+2)=9k2+2.3k+2.3k+4
Vì 4 chia 3 dư 1 nên n2 chia 3 dư 1 (2)
Từ (1) và (2) =>ĐPCM
Do n không chia hết cho 3 => n = 3k + 1 hoặc n = 3k + 2 \(\left(k\in N\right)\)
+ Nếu n = 3k = 1 thì n2 = (3k + 1).(3k + 1)
= (3k + 1).3k + (3k + 1)
= 9k2 + 3k + 3k + 1 chia 3 dư 1
+ Nếu n = 3k + 2 thì n2 = (3k + 2).(3k + 2)
= (3k + 2).3k + (3k + 2)
= 9k2 + 6k + 3k + 4 chia 3 dư 1
Vậy n2 luôn chia 3 dư 1 với mọi \(n\in N\); n không chia hết cho 3 (đpcm)
mình chỉ làm đc ý thứ nhất thui
bạn cần phân tích n^2+7n+22=(n+2)(n+5)+12
xét hiệu n+5-(n+2)=3chia hết cho 3
=>n+5và n+2 có cùng số dư khi chia cho 3
+xét n+5 và n+2 có cùng số dư khác 0:
=>(n+5)(n+2) không chia hết cho 3
12 chia hết cho 3=>(n+2)(n+5)+12 không chia hết cho 3
+xét n+5 và n+2 cùng chia hết cho 3
=>(n+5)(n+2) chia hết cho 9
12 không chia hết cho 9=>(n+5)(n+2)+12 không chia hết cho 9
phần sau làm tương tự tách n^2-5n-49=(n-9)(n+4)-13
Để 2^n chia hết cho 3
suy ra 2^n thuộc BC<3>
Ta có 3=3
suy ra:BCNN<3>=3
suy ra:BC<3>=B<3>={0;3;6;9;12;15;18;21;...}
Mà 2^n thuộc BC<3>
suy ra:n thuộc tập hợp:rỗng
Vậy không có số tự nhiên n nào thỏa mãn yêu cầu đề bài