Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu E xảy ra từ là bắt được con gà trống từ chuồng I. Vì bắt ngẫu nhiên một con gà của chuồng I để đem bán rồi dồn các con gà còn lại của chuồng I vào chuồng II nên chuồng II có 12 con gà mái và 8 con gà trống. Vậy \(P\left(F\right)=\dfrac{12}{20}=\dfrac{3}{5}\).
Nếu E không xảy ra từ là bắt được con gà mái từ chuồng I. Vì bắt ngẫu nhiên một con gà của chuồng I để đem bán rồi dồn các con gà còn lại của chuồng I vào chuồng II nên chuồng II có 11 con gà mái và 9 con gà trống. Vậy \(P\left(F\right)=\dfrac{11}{20}\).
Như vậy, xác suất của biến cố F đã thay đổi phụ thuộc vào biến cố E xảy ra hay không xảy ra. Do đó hai biến cố E và F không độc lập.
TH1: biến cố E xảy ra
=>Bắt được 1 con gà trống trong chuồng I
Vì bắt ngẫu nhiên một con gà của chuồng I để đem bán rồi dồn các con gà còn lại của chuồng I vào chuồng II nên nên chuồng II có 12 con gà mái và 8 con gà trống
=>P(E)=12/20=3/5
TH2: Biến cố E không xảy ra
=>bắt được một con gà mái trong chuồng I
Vì bắt ngẫu nhiên một con gà của chuồng I để đem bán rồi dồn các con gà còn lại của chuồng I vào chuồng II nên nên chuồng II có 11 con gà mái và 9 con gà trống
=>P(E)=11/20
Vì biến cố E xảy ra như thế nào thì F cũng sẽ bị ảnh hưởng theo nên biến cố E và biến cố F là hai biến cố không độc lập
Có 2 hướng: tính xác suất bắt được 3 con trắng sau 5,6,7 lần bắt (3 trường hợp) hoặc tính xác suất bắt được 3 con trắng sau 3,4 lần bắt (2 trường hợp) rồi lấy 1 trừ đi kiểu phần bù.
- Bắt được 3 con trắng ngay sau 3 lần bắt đầu tiên: chọn 3 con bất kì từ 7 con có \(A_7^3\) cách chọn, chọn ra 3 con trắng từ 3 con trắng có \(A_3^3\) cách \(\Rightarrow P_1=\frac{A_3^3}{A_7^3}=\frac{1}{35}\)
- Bắt 3 con trắng sau 4 lượt, trong đó lượt 4 là con trắng, 3 lượt còn lại có 2 con trắng: chọn 4 con từ 7 con có \(A_7^4\) cách, chọn 1 con trắng từ 3 con trắng có \(P_3^1\) cách (lượt bắt cuối), chọn 2 con trắng và 1 con đen từ 6 con còn lại có \(C_2^2C_4^1.3!\Rightarrow P_2=\frac{P_3^1.C_3^2.C_4^1.3!}{A_7^4}=\frac{3}{35}\)
\(\Rightarrow P=1-\left(P_1+P_2\right)=\frac{31}{35}\)
TH1: Nếu con gà chạy sang chuồng 2 là một con gà mái thì lúc này chuồng 2 có 7 con gà trống và 4 con gà mái \(\Rightarrow\) P(gà trống) \(=\dfrac{7}{11}\)
TH2: Nếu con gà chạy sang chuồng 2 là một con gà trống thì lúc này chuồng 2 có 8 con gà trống và 3 con gà mái \(\Rightarrow\) P(gà trống) \(=\dfrac{8}{11}\)
Bởi chuồng 1 có số lượng gà trống và gà mái bằng nhau nên xác suất để 1 con gà trống hay 1 con gà mái chạy từ chuồng 1 sang chuồng 2 là như nhau.
\(\Rightarrow\) P(gà trống) \(=\dfrac{\dfrac{7}{11}+\dfrac{8}{11}}{2}=\dfrac{15}{22}\)
2) Bạn bổ sung thêm đề bài nhé.
a) Không gian mẫu là kết quả của việc lấy ngẫu nhiên 1 quả cầu ở hộp thứ nhất và một quả cầu ở hộp thứ hai
+ Có 10 cách lấy 1 quả cầu bất kì ở hộp 1 và có 10 cách lấy 1 quả cầu bất kì ở hộp 2. Nên số phần tử của không gian mẫu là;
⇒ n(Ω) = 10.10 = 100.
A: “ Quả cầu lấy từ hộp thứ nhất trắng”
⇒ Có 6 cách lấy quả cầu màu trắng ở hộp A và 10 cách lấy quả cầu ở hộp B
⇒ n(A) = 6.10 = 60.
B: “Quả cầu lấy từ hộp thứ hai trắng”
⇒ Có 4 cách lấy quả cầu màu trắng ở hộp B và 10 cách lấy quả cầu ở hộp A
⇒ n(B) = 4.10 = 40.
A.B: “Cả hai quả cầu lấy ra đều trắng”
⇒ Có 6 cách lấy quả cầu màu trắng ở hộp A và 4 cách lấy quả cầu màu trắng ở hộp B
⇒ n(A.B) = 6.4 = 24.
hay P(A.B) = P(A).P(B)
⇒ A và B là biến cố độc lập.
b) Gọi C: “Hai quả cầu lấy ra cùng màu”.
Ta có: A− : “Quả cầu lấy ra từ hộp thứ nhất màu đen”
B− : “ Quả cầu lấy ra từ hộp thứ hai màu đen”
⇒A−.B− : “Cả hai quả cầu lấy ra đều màu đen”
Nhận thấy A.B và A−.B− xung khắc (Vì không thể cùng lúc xảy ra hai trường hợp 2 quả cầu lấy ra cùng trắng và cùng đen)
Và C=(A.B)∪(A−.B−)
c) C− : “Hai quả cầu lấy ra khác màu”
⇒ P(C− )=1-P(C)=1-0,48=0,52
Phép thử T được xét là: "Từ mỗi hộp lấy ngẫu nhiên một quả cầu".
Mỗi một kết quả có thể có của phép thư T gồm hai thành phần là: 1 quả cầu của hộp thứ nhất và 1 quả cầu của hộp thứ 2.
Có 10 cách để lấy ra 1 quả cầu ở hộp thứ nhất và có 10 cách để lấy 1 quả cầu ở hộp thứ 2. Từ đó, vận dụng quy tắc nhân ta tìm được số các cách để lập được một kết quả có thể có của hai phép thử T là 10 . 10 = 100. Suy ra số các kết quả có thể có của phép thử T là n(Ω) = 100.
Vì lấy ngầu nhiên nên các kết quả có thể có của phép thử T là đồng khả năng.
Xét biến cố A: "Quả cầu lấy từ hộp thứ nhất có màu trắng".
Mỗi một kết quả có thể có thuận lợi cho A gồm 2 thành phần là: 1 quả cầu trắng ở hợp thứ nhất và 1 quả cầu (nào đó) ở hộp thứ 2. Vận dụng quy tắc nhân ta tìm được số các kết quả có thể có thuận lợi cho A là: n(A) = 6 . 10 = 60.
Suy ra P(A) = = 0,6.
Xét biến cố B: "Quả cầu lấy từ hộp thứ hai có màu trắng".
Tương tự như trên ta tìm được số các kết quả có thể thuận lợi cho B là:
n(B) = 10 . 4 = 40.
Từ đó suy ra P(B) = = 0,4.
a) Ta có A . B là biến cố: "Lấy được 1 cầu trắng ở hộp thứ nhất và 1 cầu trắng ở hộp thứ hai". Vận dụng quy tắc nhân ta tìm được số các kết quả có thể có thuận lợi cho A . B là:
6 . 4 =24. Suy ra:
P(A . B) = = 0,24 = 0,6 . 0,4 = P(A) . P(B).
Như vậy, ta có P(A . B) = P(A) . P(B). Suy ra A và B là hai biến cố độc lập với nhau.
b) Gọi C là biến cố: "Lấy được hai quả cầu cùng màu". Ta có
C = A . B + . .
Trong đó = "Quả cầu lấy từ hộp thứ nhất có màu đen" và P() = 0,4.
: "Quả cầu lấy từ hộp thứ hai có màu đen" và P() = 0,6.
Và ta có A . B và . là hai biến cố xung khắc với nhau.
A và B độc lập với nhau, nên và cũng độc lập với nhau.
Qua trên suy ra;
P(C) = P(A . B + . ) = P(A . B) + P( . ) = P(A) . P(B) + P() . P()
= 0,6 . 0,4 + 0,4 . 0,6 = 0,48.
c) Gọi D là biến cố: "Lấy được hai quả cầu khác màu". Ta có
D = => P(D) = 1 - P(C) = 1 - 0,48 = 0,52.
Phương pháp: Chia đường đi của thỏ thành 2 giai đoạn, tính số phần tử của không gian mẫu và số phần tử của biến cố A « thỏ đến được vị trí B » .
Cách giải :
Từ A đến B nhất định phải đi qua D, ta chia làm 2 giai đoạn A → D và D → B
Từ A → D có 9 cách.
Từ D → B có 6 cách tính cả đi qua C và có 3 cách không đi qua C.
Không gian mẫu n Ω = 9 . 6 = 54
Gọi A là biến cố « thỏ đến được vị trí B » thì nA = 9.3 = 27
Vậy
a) \(P\left( A \right) = \frac{6}{{10}} = \frac{3}{5};P\left( B \right) = \frac{7}{8}\)
Không gian mẫu là tập hợp số cách Bạn Long lấy được một quả bóng từ hộp I và Bạn Hải lấy một quả bóng từ hộp II do đó \(n\left( \Omega \right) = 10.8 = 80\)
C: “Bạn Long lấy được quả màu trắng và bạn Hải lấy được quả màu đen”
Công đoạn 1: Bạn Long lấy được quả màu trắng có 6 cách
Công đoạn 2. Bạn Hải lấy được quả màu đen có 7 cách
Theo quy tắc nhân, tập hợp C có 6.7 = 42 (phần tử)
\(P\left( C \right) = P\left( {AB} \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{42}}{{80}} = \frac{{21}}{{40}}\)
b) \(P\left( A \right).P\left( B \right) = \frac{3}{5}.\frac{7}{8} = \frac{{21}}{{40}}\)
Vậy P(AB) = P(A).P(B).
Nếu A xảy ra tức là bắt được con thỏ trắng từ chuồng I. Vậy \(P\left( B \right) = \frac{7}{{10}}\)
Nếu A không xảy ra tức là bắt được con thỏ đen từ chuồng I. Vậy \(P\left( B \right) = \frac{7}{{10}}\)
Như vậy xác suất xảy ra của biến cố B không thay đổi bởi việc xảy ra hay không xảy ra của biến cố A.
Vì từ mỗi chuống bắt một con thỏ nên \(P\left( A \right) = \frac{{10}}{{15}} = \frac{2}{3}\) dù biến cố B xảy ra hay không xảy ra.
Vậy hai biến cố A và B độc lập.