Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi trung điểm của AC là O ta có OD là đường trung trực của đoạn thẳng AC
\(\Rightarrow\) \(OD\perp AC\) và OA = OC
Xét \(\Delta ADO\) và \(\Delta CDO\) có :
AO = CO (cmt)
\(\Lambda AOD=\Lambda COD=90^o\)
OD : cạnh chung
\(\Rightarrow\Delta ADO=\Delta CDO\) ( c.g.c )
\(\Rightarrow AD=CD\) ( 2 cạnh tương ứng ) (1)
\(\Rightarrow\Delta ADC\) cân tại D.
\(\Rightarrow\Lambda DAC=\Lambda DCA\) hay \(\Lambda DAC=\Lambda BCA\) (*)
Vì \(\Delta ABC\) cân tại A
\(\Rightarrow AB=AC;\Lambda ABC=\Lambda BCA\)
Từ (*) \(\Rightarrow\Lambda DAC=\Lambda ABC\)
Mà \(\Lambda DBA+\Lambda ABC=\Lambda EAC+\Lambda DAC=180^o\)
\(\Rightarrow\Lambda DBA=\Lambda EAC\)
Xét \(\Delta ABD\) và \(\Delta CAE\) có:
DB = AE (gt)
\(\Lambda DBA=\Lambda EAC\) ( cmt )
AB = AC ( cmt )
\(\Rightarrow\Delta ABD=\Delta CAE\) ( c.g.c)
\(\Rightarrow AD=CE\) ( 2 cạnh tương ứng) (2)
Từ (1) và (2)
\(\Rightarrow CD=CE\)
\(\Rightarrow\Delta DCE\) cân tại C ( đpcm)