\(\left\{7;8\right\}\subset S\subset\left\{3;7;8;9\right\}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2016

Các tập hợp đó là

{7;8} ; {3;7;8} ; {7;8;9} ; {3;7;8;9}

Vậy có 4 tập hợp S thõa mãn 

3 tháng 1 2016

Có 2 tập hợp đó là: {3;7;8} và {7;8;9}.                 

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0
13 tháng 3 2020

a) Ta có : \(\left|x\right|+\left|y\right|=10\)

+) Xét |x| + |y| = x + y = 10

Ta lần lượt đếm từng cặp :

0 + 10 = 10

1 + 9 = 10

2 + 8 = 10

3 + 7 = 10

4 + 6 = 10

5 + 5 = 10

6 + 4= 10

7 + 3 = 10

8 + 2 = 10

9 + 1 = 10

10 + 0 = 10

=> Có 20 cặp số

+) TH âm cũng có thêm 20 cặp số

<=> 20 cặp số + 20 cặp số = 40 cặp số

b) Nếu x = 0 thì \(y=0;\pm1;\pm2;...;\pm9\)gồm 19 giá trị.Nếu x = \(\pm1\)thì y = \(0;\pm1;\pm2;...;\pm8\),có 17 giá trị...Nếu x = \(\pm8\)thì \(y=0;\pm1\). Nếu x = \(\pm19\)thì y = 0 ,gồm 1 giá trị

Có tất cả : \(2\left(1+3+...+17\right)+19=z\)(đặt z là số cần tìm)

Số số hạng là : \(\left(17-1\right):2+1=9\)

Tổng của dãy ngoặc trên là \(\left(17+1\right)\cdot9:2=81\)

=> \(2\cdot81+19=z\)

=> \(162+19=181=z\)

Vậy có tất cả 181 cặp số.

7 tháng 8 2016

:
\(\left|x-2,5\right|+\left|3,5-x\right|=0\)

ta có \(\left|x-2,5\right|\ge0\)

            \(\left|3,5-x\right|\ge0\)

nên \(\left|x-2,5\right|+\left|3,5-x\right|\ge0\)

để \(\left|x-2,5\right|+\left|3,5-x\right|=0\) thì \(\hept{\begin{cases}x-2,5=0\\3,5-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2,5\\x=3,5\end{cases}}}\)(vô lí)

vì x không thể xuất hiện 2 lần trong 1 trường hợp vậy x có 0 phần tử thỏa mãn yêu cầu đề bài đã cho.

7 tháng 8 2016

\(\left|x-2,5\right|\ge0\)

\(\left|3,5-x\right|\ge0\)

\(\Rightarrow\left|x-2,5\right|+\left|3,5-x\right|\ge0\)

Do vậy 

\(\hept{\begin{cases}\left|x-2,5\right|=0\\\left|3,5-x\right|=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2,5\\x=3,5\end{cases}}}\)( vô lý )

Vậy có 0 phần tử của tập hợp các số x thỏa mãn đề bài

9 tháng 6 2017

a) Cường cộng lần lượt hai số một từ trái sang phải.

Mai áp dụng tính chất giao hoán và kết hợp để cộng.

b) Theo em, thì nên làm theo cách bạn Mai hợp lí và đơn giản hơn.

8 tháng 1 2016

S = {0; 1}           

27 tháng 10 2016

Xét vế trái ta có:

/x-1/+/x-5/=/x-1/+/5-x/\(\ge\)/x-1+5-x/=4

Mà vế phải là 4

\(\Rightarrow\)/x-1/+/x-5/=4\(\Leftrightarrow\left(x-1\right)\left(5-x\right)>0\)

Sau đó bạn xét 2 trường hợp

Th1:(x-1)>0 và (5-x)>0

Th2:(x-1)<0 và (5-x)<0

27 tháng 10 2016

Có: \(\left|x-1\right|\ge x-1\); \(\left|x-5\right|\ge5-x\forall x\)

\(\Rightarrow\left|x-1\right|+\left|x-5\right|\ge\left(x-1\right)+\left(5-x\right)=4\)

Mà theo đề bài, |x - 1| + |x - 5| = 4

\(\Rightarrow\begin{cases}x-1\ge0\\x-5\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge1\\x\le5\end{cases}\)\(\Rightarrow1\le x\le5\)

Mà x nguyên \(\Rightarrow x\in\left\{1;2;3;4;5\right\}\)

Vậy có 5 số nguyên x thỏa mãn đề bài

27 tháng 10 2016

5banhqua

 

2 tháng 2 2020

2. Ta có: n + S ( n ) + S ( S (n) ) = 60

Có: n \(\ge\)S ( n ) \(\ge\)S ( S (n) ) 

=> n + n + n  \(\ge\)n + S ( n ) + S ( S (n) ) \(\ge\)60

=> 3n \(\ge\)60

=> n \(\ge\)20

=> 20 \(\le\)\(\le\)60 

Đặt: n = \(\overline{ab}\)

=> \(2\le a\le6\)

và \(2+0\le a+b\le5+9\)

=> \(2\le a+b\le14\)

a + b234567891011121314
\(\overline{ab}\)56545250484644424047454341
 loạiloạiloạitmloạiloạitmloạiloạitmloạiloạiloại

Vậy n = 50; n = 44 hoặc n = 47

2 tháng 2 2020

1. Ta có: a + 3c = 2016 ; a + 2b = 2017

=> a + 3c + a + 2b = 2016 + 2017

=> 2a + 2b + 2c + c = 4033

=> 2 ( a + b + c ) = 4033 - c 

mà a, b, c không âm 

=> c \(\ge\)0

Để P = a + b + c  đạt giá trị lớn nhất 

<=> 2 ( a + b + c ) đạt giá trị lớn nhất

<=> 4033 - c đạt giá trị lớn nhất 

<=> c đạt giá trị bé nhất

=> c = 0

=> a = 2016 ; b = ( 2017 - 2016 ) : 2 = 1/2

Vậy max P = 0 + 2016 + 1/2 = 4033/2

15 tháng 3 2017

TH1: 2x-5<0; x+1>0

=>x<2,5;x>-1

=>-1<x<2,5

Mà x thuộc Z

=>x thuộc {0;1;2}

TH2: 2x-5>0; x+1<0

=>x>2,5; x<-1 (Vô lí)

Vậy x thuộc {0;-1;2}.