\(\left|x\right|+\left|y\right|=10\)

b...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

a) Ta có : \(\left|x\right|+\left|y\right|=10\)

+) Xét |x| + |y| = x + y = 10

Ta lần lượt đếm từng cặp :

0 + 10 = 10

1 + 9 = 10

2 + 8 = 10

3 + 7 = 10

4 + 6 = 10

5 + 5 = 10

6 + 4= 10

7 + 3 = 10

8 + 2 = 10

9 + 1 = 10

10 + 0 = 10

=> Có 20 cặp số

+) TH âm cũng có thêm 20 cặp số

<=> 20 cặp số + 20 cặp số = 40 cặp số

b) Nếu x = 0 thì \(y=0;\pm1;\pm2;...;\pm9\)gồm 19 giá trị.Nếu x = \(\pm1\)thì y = \(0;\pm1;\pm2;...;\pm8\),có 17 giá trị...Nếu x = \(\pm8\)thì \(y=0;\pm1\). Nếu x = \(\pm19\)thì y = 0 ,gồm 1 giá trị

Có tất cả : \(2\left(1+3+...+17\right)+19=z\)(đặt z là số cần tìm)

Số số hạng là : \(\left(17-1\right):2+1=9\)

Tổng của dãy ngoặc trên là \(\left(17+1\right)\cdot9:2=81\)

=> \(2\cdot81+19=z\)

=> \(162+19=181=z\)

Vậy có tất cả 181 cặp số.

13 tháng 3 2020

\(a)TH1:\left\{ \begin{array}{l} \left| x \right| = 0\\ \left| y \right| = 10 \end{array} \right. \Rightarrow \left[ \begin{array}{l} x = 0;y = 10\\ x = 0;y = - 10 \end{array} \right.\)

Có hai cặp \((x;y)\) thỏa mãn.

\(TH2:\left\{ \begin{array}{l} \left| x \right| = 10\\ \left| y \right| = 0 \end{array} \right. \Rightarrow \left[ \begin{array}{l} x = 10;y = 0\\ x = - 10;y = 0 \end{array} \right.\)

Có hai cặp \((x;y)\) thỏa mãn.

\(TH3:\left| x \right| = \left| y \right| = 5 \Rightarrow \left[ \begin{array}{l} x = - 5;y = 5\\ x = 5;y = - 5\\ x = y = 5\\ x = y = - 5 \end{array} \right.\)

Có bốn cặp \((x;y)\) thỏa mãn.

Vậy có tất cả 8 cặp \((x;y)\) thỏa mãn.

13 tháng 3 2020

Bạn ơi sao x và y ko = (2,8)(4,6)(3,7)

3 tháng 7 2019

a) |-x + 2| = -|y + 9|

=> |-x + 2| + |y + 9| = 0

Ta có: |-x + 2| \(\ge\)\(\forall\)x

|y + 9| \(\ge\)\(\forall\)y

=> |-x + 2| + |y + 9| \(\ge\)\(\forall\)x; y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}-x+2=0\\y+9=0\end{cases}}\) => \(\hept{\begin{cases}x=2\\y=-9\end{cases}}\)

Vậy ...

b) |3x + 4| + |2y - 10| \(\le\)0

Ta có: |3x +  4| \(\ge\)\(\forall\)x

        |2y - 10| \(\ge\)\(\forall\)y

=> |3x + 4| + |2y - 10| \(\ge\) 0 \(\forall\)x;y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}3x+4=0\\2y-10=0\end{cases}}\) <=> \(\hept{\begin{cases}3x=-4\\2y=10\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{4}{3}\\y=5\end{cases}}\)

vậy ...

c) |-x - 3| + |y + 7| < 0

Ta có: |-x - 3| \(\ge\)\(\forall\)x

      |y + 7| \(\ge\)\(\forall\)y

=> |-x - 3| + |y + 7| \(\ge\)\(\forall\)x; y

=> ko có giá trị x, y thõa mãn đb

18 tháng 12 2016

thanks

 

20 tháng 3 2020

Đáp án là: Có vô số cặp số nguyên dương \(\left(x,y\right)\) nhưng với điều kiện là:

\(\orbr{\begin{cases}y=2x\\y=3x\end{cases}}\) và \(y\text{​​}\text{ }⋮\text{ }3402\text{ }\)

Ví dụ như \(\left(x,y\right)=\left(1134;3402\right),\left(1701;3402\right),\left(2268;6804\right),\left(3402;6804\right),...\)

Nhưng cách trình bày thì mình đang nghĩ.

22 tháng 3 2020

\(\frac{x^2+y^2}{x+y}\inƯ\left(2835\right)\). Xin lỗi, ghi nhầm đề.

22 tháng 10 2019

1.

a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)

b) x=0

d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)

e) \(x=\frac{2}{3}\)