Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số có 5 chữ số khác nhau sắp xếp theo chiều tăng dần từ tập số 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 là: . C 7 5
Số có 5 chữ số khác nhau sắp xếp theo chiều tăng dần từ tập số 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 có a = 0 là: 1 C 6 4 = C 6 4 .
Vậy số các chữ số cần tìm theo yêu cầu của đề bài là: C 7 5 - C 6 4 .
Chọn B.
Đáp án B
TH1: 4 chữ số a, b, c , d khác nhau → có C 9 4 số
TH2: Trong 4 chữ số a, b, c , d có 3 chữ số giống nhau → có 3 C 9 3 số
TH3: Trong 4 chữ số a, b, c , d có 2 chữ số giống nhau → có 2 C 9 2 số
TH4: TH1: 4 chữ số a, b, c , d giống nhau → có C 9 1 số
Vậy có tất cả C 9 4 + 3 C 9 3 + 2 C 9 2 + C 9 1 = 459 số cần tìm
Chọn C.
Phương pháp:
Tính xác suất theo định nghĩa P A = n A n Ω với n(A) là số phần tử của biến cố A , n ( Ω ) la số phân tử của không gian mẫu.
+ Chú ý rằng: Nếu số được lấy ra có chữ số đứng trước nhỏ hơn chữ số đứng sau thì không thể có số 0 trong số đó.
Cách giải: + Số có 6 chữ số khác nhau là a b c d e f với a , b , c , d , e , f ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9
Nên a có 9 cách chọn, b có 9 cách chọn, c có 8 cách chọn, d có 7 cách chọn, e có 6 cách chọn và f có 5 cách chọn.Suy ra số phần tử của không gian mẫu n Ω = 9 . 9 . 8 . 7 . 6 . 5 = 136080
+ Gọi A là biến cố a b c d e f là số lẻ và a < b < c < d < e < f
Suy ra không thể có chữ số 0 trong số a b c d e f và f ∈ 7 ; 9 .
+ Nếu f = 7 ⇒ a , b , c , d , e ∈ 1 ; 2 ; 3 ; 4 ; 5 ; 6 mà với mỗi bộ 5 số được lấy ra ta chỉ ó duy nhất 1 cách sắp xếp theo thứ tự tăng dần nên có thể lập được C 6 5 = 6 số thỏa mãn.
+ Nếu f = 9 ⇒ a , b , c , d , e ∈ 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 mà với mỗi bộ 5 số được lấy ra ta chỉ ó duy nhất 1 cách sắp xếp theo thứ tự tăng dần nên có thể lập được C 8 5 = 56 số thỏa mãn.
Suy ra n A = 6 + 56 = 62 nên xác suất cần tìm là P A = n A n Ω = 62 136080 = 31 68040
Ta có
Phần thực của z tương ứng với k là bội của 2, vậy phần thực bằng
là một số nguyên dương.
Chọn đáp án A.
Tập A gồm có
Vậy số tập hợp con có nhiều hơn một phần tử là
Chọn B.
Đáp án B
Phương pháp:
Khi chọn bất kì bộ 3 số từ các số của tập số đã cho, ta luôn sắp xếp 3 số đó theo thứ tự từ bé đến lớn bằng duy nhất một cách.
Nếu trong 3 số đã chọn, tồn tại số 0 thì do a<b<c nên a = 0: Loại.
Vậy, số các số tự nhiên thỏa mãn yêu cầu đề bài bằng số cách chọn bất kì 3 số trong tập số {1;2;3;4;5;6}
Cách giải: Số các số tự nhiên thỏa mãn yêu cầu đề bài bằng số cách chọn bất kì 3 số trong tập số {1;2;3;4;5;6} và bằng C 20 3 = 20