Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ mà: ( n + 6 ) chia hết cho n => n chia hết cho n
=> 6 phải chia hết cho n , mà 6 chia hết cho :1 ; 2 ; 3 ; 6 .
Vậy n = 1 ; 2;3;6.
Đúng 100% lun , mk mới hc hôm qua
1)\(\frac{2}{3}.\left(\frac{3}{5}+\frac{5}{7}\right)=\frac{2}{3}.\left(\frac{3.7}{5.7}+\frac{5.5}{7.5}\right)\)\(=\frac{2}{3}.\left(\frac{21}{35}+\frac{25}{35}\right)\)\(=\frac{2}{3}.\frac{46}{35}\)\(=\frac{92}{105}\)
2) (2,8x - 32) : 2/3 = 90 (x2 - 4)(x2 - 25 ) là số nguyên âm
=> 2,8x - 32 = -90 x 2/3 => (x2 - 4)(x2 - 25 ) < 0
=> 2,8x - 32 = -60 Trường hợp 1: x2 - 4 > 0 và x2 - 25 < 0
=> 2,8x = -60 + 32 => x2 > 4 và x2 < 25
=> 2,8x = -28 => x > 2 và x < 5 => 2 < x < 5
=>x =10 Trường hợp 2: x2 - 4 < 0 và x2 - 25 > 0
=> x2 < 4 và x2 > 25
=> x < 2 và x > 5 => 5 < x < 2 ( vô lí)
3) số học sinh giỏi là: 30 x 10% = 3 ( học sinh)
Số học sinh khá là: 30 x 50% = 15 ( học sinh)
Số học sinh trung bình là: 30 - 3 - 15 = 12 ( học sinh)
4) ta có: góc yOz + góc xOz = góc xOy
=> góc yOz + 28 = 130
=> góc yOz = 1020
Góc zOt = góc yOt
=> Góc zOt = góc yOz : 2 = 102 : 2 = 510
=> góc xOt = góc xOz + góc zOt = 28 + 51 = 790
Gọi số cam của ba giỏ lần lượt là a, b, c (a, b, c là số tự nhiên nhỏ hơn 172)
Theo bài ra ta có : \(a+b+c=172\)
và \(\frac{2}{5}a+\frac{1}{4}b+\frac{5}{12}c=64\)
\(\Leftrightarrow\frac{24a+15b+25c}{60}=64\)
\(\Leftrightarrow15\left(a+b+c\right)+9a+10c=3840\)
\(\Leftrightarrow15.172+9a+10c=9840\)
\(\Leftrightarrow9a+10c=1260\)
Ta lại có \(\frac{1}{5}\)số cam của giỏ thứ 1 và \(\frac{2}{9}\)số cam của giỏ thứ 3 bằng:
\(\frac{a}{5}+\frac{2}{9}c=\frac{9a+10c}{45}=28\) (quả)
ĐS: 28 quả.
mình nhầm câu b:
Áp dụng....
A=10^11-1/10^12-1<10^11-1+11/10^12-1+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)
=10^10+1/10^11+1=B
Vậy A<B(câu này mới đúng còn câu b mình làm chung với câu a là sai)
a) Với a<b=>a+n/b+n >a/b
Với a>b=>a+n/b+n<a/b
Với a=b=>a+n/b+n=a/b
b) Áp dụng t/c a/b<1=>a/b<a+m/b+m(a,b,m thuộc z,b khác 0)ta có:
A=(10^11)-1/(10^12)-1=(10^11)-1+11/(10^12)-1+11=(10^11)+10/(10^12)+10=10.[(10^10)+1]/10.[(10^11)+1]
=(10^10)+1/(10^11)+1=B
Vậy A=B
\(A=3^1+3^2+...+3^{2006}\)
\(3A=3^2+3^3+...+3^{2007}\)
\(3A-A=\left(3^2+3^3+...+3^{2007}\right)-\left(3^1+3^2+...+3^{2006}\right)\)
\(2A=3^{2007}-3\)
\(A=\frac{3^{2007}-3}{2}\)
\(2A+3=3^x\)
\(\left(3^{2007}-3\right)+3=3^x\)
\(3^{2007}+\left(-3\right)+3=3^x\)
\(3^{2007}+\left[\left(-3\right)+3\right]=3^x\)
\(\Rightarrow3^{2007}=3^x\)
\(\Rightarrow x=2007\)
a) A bằng 31+32+33+34+...+32006
3A bằng 3.(31+32+33+34+...+32006)
3A bằng 32+33+34+35+...+32007
3A-A bằng (32+33+34+35+...+32007) - (31+32+33+34+...+32006)
2A bằng 32007-31
A bằng (32007-3) : 2
b) 2A+3 bằng 3x
Thay 2A bằng 32007-3, ta có :
2A+3 bằng 3x
32007-3+3 bằng 3x
32007 bằng 3x
suy ra x bằng 2007
Vậy x bằng 2007
\(\frac{43}{47}\) và \(\frac{53}{57}\)
Phương pháp 1 , dùng phần bù , phần hơn :
Để bằng 1 , \(\frac{43}{47}\) phải cộng thêm : 1 - \(\frac{43}{47}\) = \(\frac{4}{47}\)
Để bằng 1 . phân số \(\frac{53}{57}\) phải cộng thêm : 1 - \(\frac{53}{57}\) = \(\frac{4}{57}\)
Do \(\frac{4}{57}\) < \(\frac{4}{47}\) nên \(\frac{43}{47}\) < \(\frac{53}{57}\) [ do dùng phần bù nhiều hơn nên bé hơn ]
\(\frac{12}{47}\)và \(\frac{19}{77}\)
Dùng phân số trung gian :
\(\frac{12}{47}\)> \(\frac{12}{48}\) = \(\frac{1}{4}\) ; \(\frac{19}{77}\)< \(\frac{19}{76}\) = \(\frac{1}{4}\)
Vì \(\frac{12}{47}\)> \(\frac{1}{4}\) > \(\frac{19}{77}\) nên \(\frac{12}{47}\) > \(\frac{19}{77}\)
a.1 - 43/47 = 4/47 ; 1 - 53/57 = 4/57. Vì 4/47 > 4/57 nên 53/57 > 43/47
b.12/47 = 0,255 ; 19/77 = 0,246. Vì 0,255 > 0,246 nên 12/47 > 19/77