Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử chữ số cần tìm có dạng \(\overline {abc} \)
Chữ số a là chữ số hàng trăm và là chữ số chẵn nên có 4 cách chọn (2, 4, 6, 8)
Chữ số c là chữ số hàng số hàng đơn vị và là chữ số lẻ nên có 5 cách chọn (1, 3, 5, 7, 9)
Chữ số b không có điều kiện ràng buộc nên có 10 cách chọn từ 10 chữ số bất kì
Áp dụng quy tắc nhân, ta có số số tự nhiên thỏa mãn yêu cầu là:
\(4.5.10 = 200\)
Vậy có 200 số tự nhiên có 3 chữ số, trong đó chữ số hàng trăm là chữ số chẵn, chữ số hàng đơn vị là chữ số lẻ.
\(\overline{abcdef}\)
c,d,e có thể lấy bộ ba (1;2;5); (1;3;4)
TH1: c,d,e lấy bộ ba (1;2;5)
a có 6 cách
b có 5 cách
f có 4 cách
c,d,e có 3!=6 cách
=>Có 6*6*5*4=36*20=720(số)
TH2: c,d,e lấy bộ ba 1;3;4
a có 6 cách
b có 5 cách
f có 4 cách
c,d,e có 3!=6 cách
=>Có 6*6*5*4=36*20=720(số)
=>Có 720+720=1440 số
Từ 100 đến 199 có 19 số có chứa chữ số 5
Từ 200 đến 299 có 19 số chứa chữ số 5
Lập luận như vậy ta tìm ra được từ 100 đến 999 có số các số có chứa chữ số 5 là:
19 x 8 + 100 = 252 ( số)
( 100 ở đây là tính từ 500 đến 599 có 100 số chứa số 5 còn các hàng trăm không phải là 5 thì lập luận để tìm như trên)
Vậy có số các số có 3 chữ số mà trong mỗi số không có chữ số 5 là : 900 - 252 = 648 (số)
Số các số có 3 chữ số là 900 số
Trong đó các số không có chữ số 1 gồm có : 8 cách chọn chữ số hàng trăm, 9 cách chọn chữ số hàng chục, 9 cách chọn chữ số hàng đơn vị
Số các số có 3 chữ số không có chữ số 1 gồm
8x9x9=648(số)
Số các số có 3 chữ số có chữ số 1 có là
900-648=252( số)
Từ 100 đến 199 có 19 số có chứa chữ số 5
Từ 200 đến 299 có 19 số chứa chữ số 5
Lập luận như vậy ta tìm ra được từ 100 đến 999 có số các số có chứa chữ số 5 là:
19 x 8 + 100 = 252 ( số)
( 100 ở đây là tính từ 500 đến 599 có 100 số chứa số 5 còn các hàng trăm không phải là 5 thì lập luận để tìm như trên)
Vậy có số các số có 3 chữ số mà trong mỗi số không có chữ số 5 là : 900 - 252 = 648 (số)
Tổng các chữ số của nó là số lẻ khi số chữ số lẻ của nó là lẻ
Các trường hợp thỏa mãn: 1 lẻ 5 chẵn, 3 lẻ 3 chẵn, 5 lẻ 1 chẵn
TH1: 1 lẻ 5 chẵn:
Chọn 1 chữ số lẻ từ 5 chữ số lẻ (1;3;5;7;9) có \(C_5^1\) cách
Chọn 5 chữ số chẵn từ 5 chữ số chẵn (0;2;4;6;8) có \(C_5^5\) cách
Hoán vị 6 chữ số rồi trừ đi trường hợp số 0 đứng đầu: \(6!-5!\) cách
\(\Rightarrow C_5^1.C_5^4.\left(6!-5!\right)=3000\) số
TH2: 3 lẻ 3 chẵn.
Ta có \(C_5^3\) cách chọn 3 chữ số lẻ
Chọn 3 chữ số chẵn bất kì: \(C_5^3\) cách
Hoán vị chúng: \(6!\) cách
\(\Rightarrow C_5^3.C_5^3.6!\) số (tính cả trường hợp 0 đứng đầu)
Chọn 3 chữ số chẵn sao cho có mặt chữ số 0: \(C_4^2\) cách
Hoán vị 6 chữ số sao cho 0 đứng đầu: \(5!\) cách
\(\Rightarrow C_5^3.C_4^2.5!\) cách
\(\Rightarrow C_5^3.C_5^3.6!-C_5^3.C_4^2.5!=64800\) số
TH3: 5 lẻ 1 chẵn
Chọn 5 chữ số lẻ: \(C_5^5=1\) cách
Chọn 1 chữ số chẵn bất kì: 5 cách
Chọn chữ số chẵn sao cho nó là số 0: 1 cách
Hoán vị 6 chữ số 1 cách bất kì: \(6!\) cách
Hoán vị 6 chữ số sao cho số 0 đứng đầu: \(5!\) cách
\(\Rightarrow1.\left(5.6!-1.5!\right)=3480\) số
Cộng 3 TH lại ta có đáp án
Chọn các chữ số hàng trăm, hàng chục, hàng đơn vị trong các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
a) - chữ số hàng trăm có 9 cách (khác 0)
- chữ số hàng chục có 9 cách (khác chữ số hàng trăm)
- chữ số hàng đơn vị có 8 cách (khác chữ số hàng trăm và hàng chục)
Vậy có tất cả 9. 9. 8 = 648 số tự nhiên có 3 chữ số khác nhau.
b) - Chọn chữ số hàng đơn vị có 5 cách
- Chọn chữ số hàng trăm có 8 cách
- Chọn chữ số hàng chục có 8 cách
Vậy có tất cả 5. 8. 8 = 320 số lẻ có 3 chữ số khác nhau.
c) - Chọn chữ số hàng đơn vị có 2 cách
- Chọn chữ số hàng trăm có 9 cách
- Chọn chữ số hàng chục có 10 cách
Vậy có tất cả 2.9.10 = 180 số tự nhiên có 3 chữ số chia hết cho 5.
d) Trường hợp 1: chữ số hàng đơn vị là 0.
- Chọn chữ số hàng trăm có 9 cách
- Chọn chữ số hàng chục có 8 cách
Trường hợp 2 chữ số hàng đơn vị là 5:
- Chọn chữ số hàng trăm có 8 cách (khác 0 và 5)
- Chọn chữ số hàng chục có 8 cách
Vậy có tất cả 9.8 +8.8 = 136 số tự nhiên có 3 chữ số khác nhau và chia hết cho 5.
Gọi ba chữ số của số đó theo thứ tự hàng trăm, hàng chục, hàng đơn vị là a, b, c (0 < a ≤ 9; 0 ≤ b, c ≤ 9). Ta được hệ phương trình
Giải hệ phương trình này tốn nhiều thời gian, không đáp ứng yêu cầu của một bài trắc nghiệm.
Do đó ta phải xét các phương án
- Với phương án A, tổng các chữ số là 10, do đó chia 172 cho 10 được thương là 17 và dư là 2 nên phương án A bị loại.
- Với phương án B, tổng các chữ số là 17. Đổi chữ số hàng trăm cho chữ số hàng chục ta được số 926, số này chia cho 17 không thể có thương là 30, nên phương án B bị loại.
- Với phương án D, nếu đổi chữ số hàng trăm với chữ số hàng chục ta được 857, chia số này cho tổng các chữ số là 20 không thể có thương là 34 nên phương án D bị loại.
Đáp án: C
a) Từ 4 chữ số 0, 1, 2, 3:
- Hàng trăm có 3 cách chọn.
- Hàng chục có 3 cách chọn.
- Hàng đơn vị có 2 cách chọn.
Vậy có tất cả 3.3.2 = 18 số tự nhiên khác nhau có 3 chữ số được lập từ 0, 1, 2, 3.
b) - Trường hợp 1: hàng đơn vị là số 0 như vậy hàng trăm có 3 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 3 = 6 số có thể lập được.
- Trường hợp 2: hàng đơn vị là số 2 như vậy hàng trăm có 2 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 2 = 4 số có thể lập được.
Vậy có thể lập 6 + 4 = 10 số tự nhiên chẵn có ba chữ số khác nhau.
\(\overline{abc}\) là số cần tìm
số cách chọn c là: 5
Số cách chọn b là 5
Số cách chọn a là: 9
Vậy Số số lẻ thỏa mãn đk đề bài là: 5 x 5 x 9 =225 số