Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Nếu m = 1 thì y = 1 (không thỏa mãn tổng của giá trị lớn nhất và nhỏ nhất bằng 8)
Nếu m ≠ 1 thì hàm số đã cho liên tục trên [1;2] và
Khi đó đạo hàm của hàm số không đổi dấu trên đoạn [1;2]
Do vậy
Đạo hàm f'(x) = m 2 - m + 1 ( x + 1 ) 2 > 0, ∀ x ∈ [ 0 ; 1 ]
Suy ra hàm số f(x) đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m
Theo bài ta có:
-m2+ m= -2 nên m= -1 hoặc m= 2.
Chọn D.
Chọn C
Ta có
• Nếu m < 2 thì hàm số đồng biến [0;4].
Khi đó theo đề m = 3 > 2 (loại)
• Nếu m > 2 thì hàm số nghịch biến [0;4].
Khi đó theo đề
• Nếu m = 2 thì y = 2 trên đoạn [0;4] nên không thỏa mãn yêu cầu đề bài.
Vậy m = =7 thì hàm số đạt giá trị nhỏ nhất bằng 3.