K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 11 2021

ĐKXĐ: \(x\ge0\)

\(x^2+1+\left(2-m\right)x-2\sqrt{x\left(x^2+1\right)}=0\)

Với \(x=0\) ko phải nghiệm, với \(x>0\) chia 2 vế cho x:

\(\Rightarrow\dfrac{x^2+1}{x}+2-m-2\sqrt{\dfrac{x^2+1}{x}}=0\)

Đặt \(\sqrt{\dfrac{x^2+1}{x}}=t\ge\sqrt{2}\)

\(\Rightarrow t^2-2t+2=m\)

Xét hàm \(f\left(t\right)=t^2-2t+m\) khi \(t\ge\sqrt{2}\)

\(\left\{{}\begin{matrix}a=1>0\\-\dfrac{b}{2a}=1< \sqrt{2}\end{matrix}\right.\) \(\Rightarrow f\left(t\right)\) đồng biến khi \(t\ge\sqrt{2}\)

\(\Rightarrow f\left(t\right)\ge f\left(\sqrt{2}\right)=4-2\sqrt{2}\)

\(\Rightarrow\) Pt có nghiệm khi \(m\ge4-2\sqrt{2}\)

NV
3 tháng 1 2022

ĐKXĐ: \(x\ge0\)

- Với \(x=0\) không phải nghiệm

- Với \(x>0\) , chia 2 vế của pt cho \(x\) ta được:

\(\dfrac{4x^2+1}{x}+2\sqrt{\dfrac{4x^2+1}{x}}+3-2m=0\)

Đặt \(t=\sqrt{\dfrac{4x^2+1}{x}}\ge\sqrt{\dfrac{2\sqrt{4x^2}}{x}}=2\)

Pt trở thành: \(t^2+2t+3-2m=0\)

\(\Leftrightarrow t^2+2t+3=2m\) (1)

Pt đã cho có nghiệm khi và chỉ khi (1) có nghiệm \(t\ge2\)

Xét hàm \(f\left(t\right)=t^2+2t+3\) khi \(t\ge2\)

Do \(\left\{{}\begin{matrix}a=1>0\\-\dfrac{b}{2a}=-1< 2\end{matrix}\right.\) \(\Rightarrow f\left(t\right)\) đồng biến khi \(t\ge2\)

\(\Rightarrow f\left(t\right)\ge f\left(2\right)=11\)

\(\Rightarrow\) Pt có nghiệm khi \(2m\ge11\Rightarrow m\ge\dfrac{11}{2}\)

3 tháng 1 2022

Em cảm ơn thầy ạ.

3 tháng 1 2021

Phương trình đã cho tương đương 

\(\left\{{}\begin{matrix}x\in\left[2;10\right];x\ge\dfrac{m-3}{3}\\\left[{}\begin{matrix}x=4\\x=-1\\x=11\end{matrix}\right.\end{matrix}\right.\)

Để phương trình có 2 nghiệm phân biệt thì

\(\left[{}\begin{matrix}x=4\\x=-1\\x=10\end{matrix}\right.\) không thỏa mãn điều kiện x ≥ \(\dfrac{m-3}{3}\)

⇔ \(\left[{}\begin{matrix}4< \dfrac{m-3}{3}\\-1< \dfrac{m-3}{3}\\10< \dfrac{m-3}{3}\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}m>15\\m>0\\m>33\end{matrix}\right.\) . (1)

( ( ( 0 15 33 +∞ Dựa vào trục số, (1) ⇔ m > 0

Vậy điều kiện của m là m > 0 

Sai thì thứ lỗi ạ !

 

20 tháng 12 2020

ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{x+2}+\sqrt{2-x}=t\left(2\le t\le2\sqrt{2}\right)\)

Phương trình đã cho trở thành:

\(t+t^2-4+2m+3=0\)

\(\Leftrightarrow2m=f\left(t\right)=-t^2-t+1\)

Phương trình đã cho có nghiệm khi \(minf\left(t\right)\le2m\le maxf\left(t\right)\)

\(\Leftrightarrow-7-2\sqrt{2}\le2m\le-5\)

\(\Leftrightarrow\dfrac{-7-2\sqrt{2}}{2}\le m\le-\dfrac{5}{2}\)

NV
9 tháng 1 2023

Đặt \(\sqrt{x-1}+\sqrt{5-x}=t\)

\(t\ge\sqrt{x-1+5-x}=2\)

\(t\le\sqrt{2\left(x-1+5-x\right)}=2\sqrt{2}\)

\(t^2=4+2\sqrt{\left(x-1\right)\left(5-x\right)}\Rightarrow\sqrt{\left(x-1\right)\left(5-x\right)}=\dfrac{t^2-4}{2}\)

Pt trở thành:

\(t+\dfrac{3\left(t^2-4\right)}{2}=m\Leftrightarrow\dfrac{3}{2}t^2+t-6=m\)

Xét hàm \(f\left(t\right)=\dfrac{3}{2}t^2+t-6\) với \(t\in\left[2;2\sqrt{2}\right]\)

\(-\dfrac{b}{2a}=-\dfrac{1}{3}\notin\left[2;2\sqrt{2}\right]\)

\(f\left(2\right)=2\) ; \(f\left(2\sqrt{2}\right)=6+2\sqrt{2}\) \(\Rightarrow2\le f\left(t\right)\le6+2\sqrt{2}\)

\(\Rightarrow\) Pt có nghiệm khi \(2\le m\le6+2\sqrt{2}\)

9 tháng 1 2023

Anh ơi! Anh chỉ em tiếp ạ, em chưa hiểu cách suy điều kiện t của anh ạ, trước khi đặt t thì em điều kiện trong căn trước ạ! 

2 tháng 4 2021

ĐK: \(-3\le x\le6\)

Đặt \(\sqrt{x+3}+\sqrt{6-x}=t\left(3\le t\le3\sqrt{2}\right)\)

\(\Rightarrow\sqrt{\left(x+3\right)\left(6-x\right)}=\dfrac{t^2-9}{2}\)

\(\sqrt{x+3}+\sqrt{6-x}-\sqrt{\left(x+3\right)\left(6-x\right)}=m\)

\(\Leftrightarrow m=f\left(t\right)=\dfrac{-t^2+2t+9}{2}\)

Yêu cầu bài toán thỏa mãn khi \(minf\left(t\right)\le m\le maxf\left(x\right)\)

\(\Leftrightarrow\dfrac{-9+6\sqrt{2}}{2}\le m\le3\)

NV
27 tháng 12 2022

ĐKXĐ: \(-3\le x\le6\)

Đặt \(\sqrt{x+3}+\sqrt{6-x}=t\)

Ta có: \(t=\sqrt{x+3}+\sqrt{6-x}\ge\sqrt{x+3+6-x}=3\)

\(t\le\sqrt{2\left(x+3+6-x\right)}=3\sqrt{2}\)

\(\Rightarrow3\le t\le3\sqrt{2}\)

Lại có:

\(t^2=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\Rightarrow-\sqrt{\left(x+3\right)\left(6-x\right)}=\dfrac{9-t^2}{2}\)

Phương trình trở thành:

\(t+\dfrac{9-t^2}{2}=m\Leftrightarrow m=-\dfrac{1}{2}t^2+t+\dfrac{9}{2}\)

Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+t+\dfrac{9}{2}\) trên \(\left[3;3\sqrt{2}\right]\)

\(-\dfrac{b}{2a}=1\notin\left[3;3\sqrt{2}\right]\) 

\(f\left(3\right)=3\) ; \(f\left(3\sqrt{2}\right)=\dfrac{-9+6\sqrt{2}}{2}\)

\(\Rightarrow\dfrac{-9+6\sqrt{2}}{2}\le f\left(t\right)\le3\)

\(\Rightarrow\) Phương trình có nghiệm khi \(\dfrac{-9+6\sqrt{2}}{2}\le m\le3\)

Có 4 giá trị nguyên của m thỏa mãn