Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đẳng thức:
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{24}\)
ta tính một biến theo biến còn lại:
\(\frac{1}{x}=\frac{1}{24}-\frac{1}{y}=\frac{y-24}{24y}\)
\(\Rightarrow x=\frac{24y}{y-24}\)
Do x là số tự nhiên khác 0 nên y - 24 > 0 , đặt y - 24 = k (để cho mẫu số vế phải là đơn thức). Khi đó:
y = 24 + k
\(x=\frac{24.\left(24+k\right)}{k}=24+\frac{24.24}{k}\)
Vậy để x và y là các số tự nhiên thì k là ước số của 24.24. Ta có 24.24 = (23.3)(23.3) = 26.32 nên 24.24 có (6 + 1)(2 + 1) = 21 ước.
Với mỗi giá trị của k là ước của 24.24 ta tính được một bộ (x, y) theo công thức trên.
ĐS: có 21 cặp số tự nhiên thỏa mãn điều kiện đã cho.
Từ đẳng thức:
\(\frac{1}{n}+\frac{1}{m}=\frac{1}{24}\)
ta tính một biến theo biến còn lại:
\(\frac{1}{n}=\frac{1}{24}-\frac{1}{m}=\frac{m-24}{24m}\)
\(\Rightarrow n=\frac{24m}{m-24}\)
Do n là số tự nhiên khác 0 nên m-24>0 , đặt m-24=k (để cho mẫu số vế phải là đơn thức). Khi đó:
m=24+k
n=\(\frac{24\left(k+24\right)}{k}=24+\frac{24.24}{k}\)
Vậy để x và y là các số tự nhiên thì k là ước số của 24.24. Ta có 24.24 = (23.3)(23.3) = 26.32 nên 24.24 có (6 + 1)(2 + 1) = 21 ước.
Với mỗi giá trị của k là ước của 24.24 ta tính được một bộ (m;n) theo công thức trên.
ĐS: có 21 cặp số tự nhiên thỏa mãn điều kiện đã cho.
chỗ x;y sửa lại thành m;n nhá, mình quen tìm biến x;y nên nhầm
\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(TH1:x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)
\(TH2:x+y+z\ne0\)
\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)
sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N
mà đề là x+y+z khác 0 -.-
1)
Xét \(\left|x\right|>3\)\(\Rightarrow\)\(C>0\)
Xét \(0\le\left|x\right|< 3\)\(\Rightarrow\)\(C< 0\)
+ Với \(\left|x\right|=0\)\(\Leftrightarrow\)\(x=0\) thì \(C=-2\)
+ Với \(\left|x\right|=1\)\(\Leftrightarrow\)\(x=\pm1\) thì \(C=-3\)
+ Với \(\left|x\right|=2\)\(\Leftrightarrow\)\(x=\pm2\) thì \(C=-6\)
Vậy GTNN của \(C=-6\) khi \(x=\pm2\)
2)
Xét \(x\ge0\)\(\Rightarrow\)\(x-\left|x\right|=0\)
Xét \(x< 0\)\(\Rightarrow\)\(x-\left|x\right|=2x< 0\)
Vậy GTLN của \(x-\left|x\right|=0\) khi \(x>0\)
Ví dụ một bài toán :
Tìm GTLN của B = 10-4 | x-2|
Vì |x-2| \(\ge0\forall x\)
\(\Rightarrow-4.\left|x-2\right|\le0\forall x\). Tại sao mà tìm GTLN mà lại nhỏ hơn hoặc bằng 0 ạ
Đề sai kìa bạn ơi
Nếu x+y+z = 0 thì
B = x+y/y . y+z/z . z+x/x = -z/y.(-x/z).(-y/x) = -1
Nếu x+y+z khác 0 thì :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
y+z-x/x = z+x-y/y = x+y-z/z = y+z-x+z+x-y+x+y-z/x+y+z = 1
=> y+z-x = y ; z+x-y = y ; x+y-z = x
=> x=y=z
=> B = (1+1).(1+1).(1+1) = 8
k mk nha
Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
=> \(\frac{y+z}{x}-\frac{x}{x}=\frac{z+y}{y}-\frac{y}{y}=\frac{x+y}{z}-\frac{z}{z}\)
=> \(\frac{y+z}{x}-1=\frac{z+y}{y}-1=\frac{x+y}{z}-1\)
=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)\(=\frac{y+z-z-x}{x-y}=\frac{y-x}{x-y}=-1\)(1)
Ta lại có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+y\right)\left(z+y\right)\left(x+z\right)}{xyz}\)(2)
Từ(1),(2) => \(B=-1.\left(-1\right).\left(-1\right)=-1\)
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(=\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{y+z+z+x+x+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)( \(x,y,z\ne0\))
\(\Rightarrow y+z=2x\); \(z+x=2y\); \(x+y=2z\)(1)
Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}\)(2)
Từ (1) và (2) \(\Rightarrow B=\frac{2z.2x.2y}{xyz}=\frac{8xyz}{xyz}=8\)