Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn 4 người để xếp vào 4 ghế ở dãy đầu : có \(A_7^4\) cách. Còn lại 3 người xếp vào 3 ghế ở dãy sau : Có 3! cách
Vậy có tất cả \(A_7^4.3!=5040\) cách xếp
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án A
Phương pháp :
+) Chọn vị trí cho các bạn nam (hoặc nữ).
+) Hoán đổi các vị trí.
+) Sử dụng quy tắc nhân.
Cách giải : Chọn 1 vị trí trong 2 vị trí đối xứng có C 2 1 cách chọn, như vậy có ( C 2 1 ) 4 = 2 4 cách chọn ghế cho 4 bạn nam.
4 bạn nam này có thể đổi chỗ cho nhau nên có 4! cách xếp
Vậy có 4!4!24 cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ.
![](https://rs.olm.vn/images/avt/0.png?1311)
Số cách sắp xếp 10 người vào ghế sẽ là một hoán vị của 10:
\(10!=3628800\) (cách).
![](https://rs.olm.vn/images/avt/0.png?1311)
Mỗi cách sắp xếp chỗ ngồi cho mười người vào mười ghế là một hoán vị của một tập hợp có 10 phần tử.
Vậy có P 10 = 10 ! = 3 . 628 . 800 cách sắp xếp.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ω: "Xếp 10 người vào dãy ghế có 10 chỗ."
⇒ n(Ω) = 10!
A: "Lan không ngồi 2 đầu dãy ghế."
- Lan có 8 cách chọn chỗ.
- 9 người còn lại có 9! cách chọn chỗ.
⇒ n(A) = 8.9!
\(\Rightarrow P\left(A\right)=\dfrac{8.9!}{10!}=0,8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xếp 6 học sinh trường A vào 1 dãy ghế: 6! cách
Xếp 6 học sinh trường B vào dãy còn lại: 6! cách
Lúc này hai học sinh đối diện luôn khác trường, có 6 cặp như vậy, mỗi cặp có 2 cách hoán vị nên có \(2^6\) cách hoán vị
Tổng cộng: \(6!.6!.2^6\) cách xếp thỏa mãn
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Có 2 cách xếp.
Bạn A có 6! cách.
Bạn B có 6! cách.
Đổi vị trí A,B có tất cả 2*(6!)2 cách xếp chỗ.
b) Chọn 1 học sinh A vào vị trí bất kì: 12 cách.
Chọn 1 học sinh B đối diện A có 6 cách.
Cứ chọn liên tục như vậy ta được:
\(\left(12\cdot6\right)\cdot\left(10\cdot5\right)\cdot\left(8\cdot4\right)\cdot\left(6\cdot3\right)\cdot\left(4\cdot2\right)\cdot\left(2\cdot1\right)=2^6\cdot\left(6!\right)^2\)
cách xếp chỗ để hai bạn ngồi đối diện thì kkhasc trường nhau.
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn C
Số cách xếp 4 bạn học sinh vào dãy có 4 ghế là: 4! = 24 cách.
Chọn 4 người để xếp vào 4 ghế ở dãy đầu : Có
cách. Còn lại 3 người xếp vào 3 ghế ở dãy sau : có 3! cách.
Vậy có tất cả
cách xếp.