K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2018

Mỗi cách sắp xếp chỗ ngồi cho mười người vào mười ghế là một hoán vị của một tập hợp có 10 phần tử.

Vậy có   P 10   =   10 !   =   3 . 628 . 800 cách sắp xếp.

3 tháng 4 2017

Có 5 cách

23 tháng 5 2017

Số cách sắp xếp 10 người vào ghế sẽ là một hoán vị của 10:
\(10!=3628800\) (cách).

5 tháng 1 2018

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:  a. Họ ngồi chỗ nào cũng được?  b. Nam ngồi kề nhau, nữ ngồi kề nhau?  c. Nam và nữ ngồi xen kẻ nhau?  d. Có 2 người luôn ngồi cạch nhau?Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách: a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa b. Vào 5 ghế chung quanh...
Đọc tiếp

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:

  a. Họ ngồi chỗ nào cũng được?
  b. Nam ngồi kề nhau, nữ ngồi kề nhau?
  c. Nam và nữ ngồi xen kẻ nhau?
  d. Có 2 người luôn ngồi cạch nhau?
Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách:
 a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa
 b. Vào 5 ghế chung quanh một bàn tròm, nếu không có sự phân biệt giữa các ghế này 
Câu 3: Có bao nhiêu cách sắp xếp chỗ ngồi 6 người ngồi vào một dãy 6 ghế hàng ngang nếu:
a. Có 3 người trong số đó muốn ngồi kề nhau
b. Có 2 người trong số đó không muốn ngồi kề nhau
Câu 4: Từ 5 bông vang, 3 bông trắng và 4 bông đỏ( các bông hoa xem như đôi một khác nhau ), ta chọn ra một bó gồm 7 bông:
a. Có bao nhiêu cách chọn ra bó hoa trong đó có đúng một bông đỏ
b. Có bao nhiêu cách chọn ra bó hoa trong đó có ít nhất 3 bông đỏ
c. Có bao nhiêu cách chọn ra bó hoa trong đó có mỗi màu có ít nhất 2 bông

0
5 tháng 10 2021

a) Có 2 cách xếp.

    Bạn A có 6! cách.

    Bạn B có 6! cách.

    Đổi vị trí A,B có tất cả 2*(6!)2 cách xếp chỗ.

b) Chọn 1 học sinh A vào vị trí bất kì: 12 cách.

    Chọn 1 học sinh B đối diện A có 6 cách.

    Cứ chọn liên tục như vậy ta được:

     \(\left(12\cdot6\right)\cdot\left(10\cdot5\right)\cdot\left(8\cdot4\right)\cdot\left(6\cdot3\right)\cdot\left(4\cdot2\right)\cdot\left(2\cdot1\right)=2^6\cdot\left(6!\right)^2\)

   cách xếp chỗ để hai bạn ngồi đối diện thì kkhasc trường         nhau.

9 tháng 10 2022

Ở ý a) tại sao bạn A lại có $6!$ cách v ạ?

bạn B cx thế ạ?

7 tháng 12 2017

Đáp án A.

8 tháng 11 2019

Chọn A

Mỗi cách xếp chỗ cho bốn bạn học sinh vào bốn chiếc ghế kê thành một hàng ngang là một hoán vị của 4 phần tử. Do đó có 4! = 24 cách.

NV
9 tháng 1 2022

Xếp 6 học sinh trường A vào 1 dãy ghế: 6! cách

Xếp 6 học sinh trường B vào dãy còn lại: 6! cách

Lúc này hai học sinh đối diện luôn khác trường, có 6 cặp như vậy, mỗi cặp có 2 cách hoán vị nên có \(2^6\) cách hoán vị 

Tổng cộng: \(6!.6!.2^6\) cách xếp thỏa mãn

 

15 tháng 7 2019

a) Xếp 6 nam vào 6 ghế cạnh nhau. Có 6! cách.

Giữa các bạn nam có 5 khoảng trống cùng hai đầu dãy, nên có 7 chỗ có thể đặt ghế cho nữ.

Bây giờ chọn 4 trong 7 vị trí để đặt ghế. Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

Xếp nữ vào 4 ghế đó. Có 4! cách.

Vậy có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách xếp mà không có hai bạn nữ nào ngồi cạnh nhau.

b) Xếp 6 ghế quanh bàn tròn rồi xếp nam vào ngồi. Có 5! cách.

Giữa hai nam có khoảng trống. Xếp 4 nữ vào 4 trong 6 khoảng trống đó. Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

Theo quy tắc nhân, có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

18 tháng 5 2017

Tổ hợp - xác suất