Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
uầy ko nghĩ là mk có đúng ko thông cảm :
a)Từ d1 đến d4 quy đồng đỉnh O có 24 góc cặp đối đỉnh
Có 8 góc bẹt theo mk nghĩ là thế
Vậy câu a 24 đỉn hha :>
b)
Để chứng minh bài trên chỉ với 45 độ ta có :
CMR:
gọi 4 cạnh cùng nhau mỗi cạnh 45 độ thì nhỏ hơn cách 45 độ
từ đường thẳng d1 .....d4 ko trùng mkcũng song song với nhau >3
=> 8 góc đỉnh A sẽ bằng 2 hình vuông + lại = 360 độ
=> Sẽ có 1 góc nhỏ nhất đỉnh A
=>4 đường thẳng cắt nhau tại A
=> góc nhỏ hơn 45 độ cách nhau 1 đỉnh
=>..........
Kết luận:
Cuối cùng trong tám đính có 2 góc đỉnh nhỏ hơn 45 độ
Cũng câu hỏi như vậy với 2012 đường thẳng.
Để làm được bài này ta cần thêm điều kiện "6 đường thẳng đôi một cắt nhau" và không có 3 đường thẳng nào đồng quy.
có 3 cách bạn ạ
C1 : chứng minh 1 góc bằng 180 độ
C2: coi như 3 điểm đó chưa thẳng hàng ta tách ra làm 2 đoạn chẳng hạn AC và CB. Gọi d là một đường thẳng ko giao hay cx ko trùng với một trong 2 đoạn AC, CB . Cần Chứng minh AC//d Cb//d là đk vì khi đó AC, Cb trùng nhau suy ra A<B<C thẳng hàng
C3 : Chứng minh điểm nằm giữa là trung điểm của đoạn thẳng tạo bởi 2 điểm còn lại
Lời giải:
Để cm 3 đường thẳng trên đồng quy, ta sẽ tìm giao điểm của $(d_1)$ và $(d_2)$, rồi chứng minh giao điểm đó cũng thuộc $(d_3)$ là được.
PT hoành độ giao điểm $(d_1)$ và $(d_2)$
\(-3x=2x+5\)
\(\Leftrightarrow -5x=5\Rightarrow x=-1\)
\(x=-1\rightarrow y=2x+5=-3x=3\)
Vậy giao điểm của $(d_1),(d_2)$ là \((-1,3)\)
Ta thấy: \(3=-1+4\) nên $(-1,3)$ cũng thuộc đường thẳng \(d_4: y=x+4\)
Vậy 3 đường thẳng trên đồng quy tại một điểm $(-1,3)$
a: Xét ΔBFC và ΔCEB có
BF=CE
\(\widehat{FBC}=\widehat{ECB}\)
BC chung
Do đó: ΔBFC=ΔCEB
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến ứng với cạnh đáy BC
nên AM là đường cao ứng với cạnh BC
Ta có: ΔBFC=ΔCEB
nên \(\widehat{BFC}=\widehat{CEB}\)
mà \(\widehat{CEB}=90^0\)
nên \(\widehat{BFC}=90^0\)
Xét ΔABC có
AM là đường cao ứng với cạnh BC
BE là đường cao ứng với cạnh AC
CF là đường cao ứng với cạnh AB
Do đó: AM,BE,CF đồng quy
a) Xét tam giác BFC và CEB ta có:
Góc FBC = góc ECB
BF = CE
BC cạnh chung
=> tam giác BFC = tam giác CEB (c-g-c)
Có 7 cách chứng minh 3 đường thẳng đồng quy
1. Tìm giao của hai đường thẳng, sau đó chứng minh đường thẳng thứ ba đi qua giao điểm đó .
2. Chứng minh một điểm thuộc ba đường thẳng đó.
3. Sử dụng tính chất đồng quy trong tam giác:
* Ba đường thẳng chứa các đường trung tuyến.
* Ba đường thẳng chứa các đường phân giác.
* Ba đường thẳng chứa các đường trung trực.
* Ba đường thẳng chứa các đường các đường cao.
4. Sử dụng tính chất các đường thẳng định ra trên hai đường thẳng song song những đoạn thẳng tỷ lệ.
5. Sử dụng chứng minh phản chứng
6. Sử dụng tính thẳng hàng của các điểm
7. Chứng minh các đường thẳng đều đi qua một điểm.
tk cho mk nha mk đầy đủ nhất
1. Tìm giao của hai đường thẳng, sau đó chứng minh đường thẳng thứ ba đi qua giao điểm đó .
2. Chứng minh một điểm thuộc ba đường thẳng đó.
3. Sử dụng tính chất đồng quy trong tam giác:
* Ba đường thẳng chứa các đường trung tuyến.
* Ba đường thẳng chứa các đường phân giác.
* Ba đường thẳng chứa các đường trung trực.
* Ba đường thẳng chứa các đường các đường cao.
4. Sử dụng tính chất các đường thẳng định ra trên hai đường thẳng song song những đoạn thẳng tỷ lệ.
5. Sử dụng chứng minh phản chứng
6. Sử dụng tính thẳng hàng của các điểm
7. Chứng minh các đường thẳng đều đi qua một điểm.