Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là B
Vì a18b chia hết cho cả 2 và 5 nên b = 0 , ta được số a180
Vì a180 chia hết cho cả 3 và 9 nên hay
Mà a ≠ 0 ⇒ a = 9
Vậy số cần tìm là 9180
a) Để \(\overline{163a}\) chia hết cho 5 thì \(a\in\left\{0;5\right\}\)
Mà số đó lại chia hết cho 3 nên: \(1+6+3+a=10+a\) ⋮ 3
Với a = 0 thì 10 + 0 = 10 không chia hết cho 3 (loại)
Với a = 5 thì 10 + 5 = 15 ⋮ 3 (nhận)
Vậy a = 5
b) Để \(\overline{712a4b}\) chia hết cho 2 và 5 thì \(b=0\)
Số đó có dạng \(\overline{712a40}\)
Mà số đó lại chia hết cho 3 và 9 nên: \(7+1+2+a+4+0=14+a\) ⋮ 9
\(14+a=18\Rightarrow a=4\)
Vậy (a;b) = (4;0)
a)Số cần tìm chia hết cho 2 nên chữ số tận cùng phải là số chẵn
Nếu số cần tìm bớt đi 3 ta được số mới chia hết cho 5 => số mới có chữ số tận cùng là 0 hoặc 5
Do chữ số tận cùng của số cần tìm là chẵn nên khi bớt đi 3 là số lẻ nên số mới có chữ số tận cùng là lẻ => số mới có chữ số tận cùng là 5
=> số cần tìm có chữ số tận cùng là 5+3=8
Số cần tìm là số nhỏ nhất có 3 chữ số có chữ số tận cùng là 8 và chia hết cho 9 nên số cần tìm phải có tổng các chữ số chia hết cho 9
=> Số cần tìm thoả mãn điều kiện đề bài là: 108