K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2016

vì a+b+c=0=>a=b=c=0

vậy a^3+b^3+c^3=0

16 tháng 10 2016

\(a^3+b^3+c^3=a^3+b^3+3a^2b+3ab^2+c^3-3a^2b-3ab^2\)

\(\left(a+b\right)^3+c^{^{ }^{ }3}-3ab\left(a+b\right)\)

\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b\right)\)

= -3ab.-c= 3abc ( a+b+c = o => a+b = -c)

23 tháng 7 2018

I don't now

...............

.................

.

16 tháng 6 2018

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Với \(a+b+c=0\)

Làm nốt lười quá

21 tháng 7 2018

Có :\(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Xét \(a+b+c=0\)\(\Rightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}-a=b+c\\-b=c+a\\-c=a+b\end{cases}}\)

\(\Rightarrow A=\left(\frac{b+a}{b}\right)\left(\frac{c+b}{c}\right)\left(\frac{a+c}{a}\right)=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)

Xét \(\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0-\forall a,b,c\in R\)

\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)

\(\Rightarrow A=\left(1+\frac{a}{a}\right)\left(1+\frac{b}{b}\right)\left(1+\frac{c}{c}\right)\)

           \(=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)

Vậy\(A=-1\)hoặc\(A=8\)

9 tháng 2 2020

\(\text{Ta có:}\)

\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3=\)

\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)+3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

\(\Leftrightarrow\left(a+b+c-6\right)\left(....\right)+3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

\(\Leftrightarrow a=1\text{ hoặc }b=2\text{ hoặc }c=3\)

còn lại ko tính đc bạn ktra lại đề

9 tháng 2 2020

mk nhầm , chiều mk lm tiếp

2 tháng 10 2016

Kết quả phân tích A thành nhân tử là : \(A=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a+b+c\right)\)

Mà a+b+c = 0 => A = 0

23 tháng 12 2019

bạn Hoàng Lê Bảo Ngọc phân tích như thế nào vậy mình phân tích mãi k ra