Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Chứng minh bất đẳng thức Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\text{ }\left(1\right)\)
(bình phương vài lần + biến đổi tương đương)
\(S\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2}+\sqrt{c^2+\frac{1}{c^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{9}{a+b+c}\right)^2}\)
\(t=\left(a+b+c\right)^2\le\left(\frac{3}{2}\right)^2=\frac{9}{4}\)
\(S\ge\sqrt{t+\frac{81}{t}}=\sqrt{t+\frac{81}{16t}+\frac{1215}{16t}}\ge\sqrt{2\sqrt{t.\frac{81}{16t}}+\frac{1215}{16.\frac{9}{4}}}=\frac{\sqrt{153}}{2}\)
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}.\)
a2014+b2014+c2014=1
a2015+b2015+c2015=1
=>a2014+b2014+c2014=a2015+b2015+c2015=1
=>a=b=1
=>A=3
Câu 2
Ta có ab=22=>2ab=44
Và a2+b2=125
<=>a2+2ab+b2=125+2ab
<=>(a+b)2=169
TH1: a+b=13<=>a=13-b(1)
Lại có ab=22(gt)(2)
Thế (1) vào (2) ta đc : (13-b)b=22<=>13b-b2=22<=>b2-13b+22=0
<=>(b-11)(b-2)=0<=>b=11=>a=2 hoặc b=2=>a=11
TH2: a+b=-13<=>a=-13-b(3)
Thế(3) vào (2) ta dc : (-13-b)b=22<=>-13b-b2=22<=>b2+13b+22=0
<=>(b+11)(b+2)=0<=>b=-11=>a=-2 hoặc b=-2=>a=-11 Vậykhi a=2; b=11=>B=2006
a=11;b=2=>B=2024
a=-2;b=-11=>B=2004
a=-11;b=-2=>B=2006
a,a=b+1
suy ra a-b=1 suy ra(\(\sqrt{a}+\sqrt{b}\))(\(\sqrt{a}-\sqrt{b}\))=1
suy ra \(\sqrt{a}-\sqrt{b}\)=\(\frac{1}{\sqrt{a}+\sqrt{b}}\)(1)
vì a=b+1 suy ra a>b suy ra \(\sqrt{a}>\sqrt{b}\)suy ra \(\sqrt{a}+\sqrt{b}>2\sqrt{b}\)
suy ra \(\frac{1}{\sqrt{a}+\sqrt{b}}< \frac{1}{2\sqrt{b}}\)(2)
từ (1) ,(2) suy ra\(\sqrt{a}-\sqrt{b}< \frac{1}{2\sqrt{b}}\)suy ra \(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)(*)
ta lại có b+1=c+2 suy ra b-c =1 suy ra\(\left(\sqrt{b}-\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)=1\)
suy ra \(\sqrt{b}-\sqrt{c}=\frac{1}{\sqrt{b}+\sqrt{c}}\)(3)
vì b>c suy ra \(\sqrt{b}>\sqrt{c}\) suy ra \(\sqrt{b}+\sqrt{c}>2\sqrt{c}\)
suy ra \(\frac{1}{\sqrt{b}+\sqrt{c}}< \frac{1}{2\sqrt{c}}\)(4)
Từ (3),(4) suy ra \(\sqrt{b}-\sqrt{c}< \frac{1}{2\sqrt{c}}\) suy ra\(2\left(\sqrt{b}+\sqrt{c}\right)< \frac{1}{\sqrt{c}}\)(**)
từ (*),(**) suy ra đccm
\(\text{Ta có:}\)
\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3=\)
\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)+3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
\(\Leftrightarrow\left(a+b+c-6\right)\left(....\right)+3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
\(\Leftrightarrow a=1\text{ hoặc }b=2\text{ hoặc }c=3\)
còn lại ko tính đc bạn ktra lại đề
mk nhầm , chiều mk lm tiếp