Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mỗi hành khách có 8 cách chọn toa tàu để lên, do đó không gian mẫu là: \(8^3\)
Chọn 3 toa trong 8 toa và xếp 3 hành khách vào 3 toa đó (mỗi hành khách 1 toa): \(A_8^3\) cách
Xác suất: \(\dfrac{A_8^3}{8^3}=\dfrac{21}{32}\)
Đáp án A
Số cách để xếp 8 người vào bàn tròn là: 7!=5040
Để xếp sao cho hai nữ không ngồi cạnh nhau trước tiên ta xếp 5 nam trước: 4!=24
Giữa 5 nam có 5 chỗ trống, số cách để xếp 3 nữ vào 5 chỗ trống:
Vậy xác suất để xếp sao cho hai nữ không ngồi cạnh nhau là:
Đáp án B
Phương pháp giải: Áp dụng các quy tắm đếm cơ bản
Lời giải:
Một người có 6 cách chọn quầy khác nhau => Số phần tử của không gian mẫu là n ( Ω ) = 6 5
Chọn 3 học sinh trong 5 học sinh có C 5 3 cách, chọn 1 quầy trong 6 quầy có C 6 1 cách.
Suy ra có C 5 3 . C 6 1 cách chọn 3 học sinh vào 1 quầy bất kì.
Khi đó, 2 học sinh còn lại sẽ chọn 5 quầy còn lại => có C 5 1 cách.
Do đó, số kết quả thuận lợi cho biến cố là n ( X ) = C 5 1 . C 6 1 . C 5 1
Vậy P = n ( X ) n ( Ω ) = C 5 3 . C 6 1 . C 5 1 6 5
Chọn B
Ta có
Xét A ¯ : Có ít nhất một hàng hoặc một cột chỉ toàn số chẵn.
Vì chỉ có 4 số chẵn là 2, 4, 6, 8 nên chỉ có thể có đúng một hàng hoặc đúng một cột chỉ toàn các số chẵn. Để điền như vậy cần chọn một trong số ba hàng hoặc ba cột rồi chọn 3 số chẵn xếp vào hàng hoặc cột đó, 6 số còn lại xếp tùy ý. Do đó
Vậy
Chọn D
Số phần tử không gian mẫu:
Gọi A là biến cố: Có 3 người cùng đến quầy thứ nhất .
Số kết quả thuận lợi của biến cố A là:
Xác suất của biến cố A: