Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không gian mẫu: \(C_5^3=10\)
Chọn 3 bạn có ít nhất 2 nữ: ta có 2 trường hợp thuận lợi là 2 nữ 1 nam và 3 bạn đều nữ
\(\Rightarrow C_2^1.C_3^2+C_3^3=7\) cách
Xác suất: \(P=\dfrac{7}{10}\)
1.
Không gian mẫu: \(8!\)
Xếp Quân Lâm cạnh nhau: \(2!\) cách
Coi cặp Quân-Lâm như 1 bạn, hoán vị với 6 bạn còn lại: \(7!\) cách
\(\Rightarrow2!.7!\) cách xếp thỏa mãn
Xác suất: \(P=\dfrac{2!.7!}{8!}=\dfrac{1}{4}\)
2.
Không gian mẫu: \(C_{12}^3\)
Lấy 3 bóng sao cho ko có bóng tốt nào (cả 3 đều là bóng ko tốt): \(C_4^3\) cách
\(\Rightarrow C_{12}^3-C_4^3\) cách lấy 3 bóng sao cho có ít nhất 1 bóng tốt
Xác suất: \(P=\dfrac{C_{12}^3-C_4^3}{C_{12}^3}=...\)
3.
Số tam giác bằng với số cách chọn 3 điểm từ 4 điểm nên có: \(C_4^3=...\) tam giác
4.
\(T_{\overrightarrow{v}}\left(E\right)=F\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}x=-3+1=-2\\y=5-2=3\end{matrix}\right.\) \(\Rightarrow\left(-2;3\right)\)
5.
Có 2 cạnh chéo nhau với AB là SC, SD
Gọi X là biến cố " chia 20 bạn thành 4 nhóm A, B, C, D mỗi nhóm 5 bạn sao cho 5 bạn nữ thuộc cùng 1 nhóm"
Ta có \(\left|\Omega\right|=C^5_{20}C^5_{10}C^5_5\) cách chia các bạn nam vào 3 nhóm còn lại.
Do vai trò các nhóm như nhau, có \(4C^5_{20}C^5_{10}C^5_5\) cách chia các bạn vào các nhóm A, B, C,D trong đó 5 bạn nữ thuộc một nhóm
Xác suất cần tìm là \(P\left(X\right)=\frac{4}{C^5_{20}}=\frac{1}{3876}\)
n(Ω) = C552 = 2598960 ( cách )
gọi biến cố đối của biến cố A la ' trong năm quân bài này ko có quân át '
➩ n(A đối) = 1712304 (cách )
➩ P(A đối) = n(A)/n(Ω) = 1712304/2598960 ( cách )
từ đó, suy ra P(A) = 1- P(A đối ) = 1-1712304/2598960 = 0,3412