K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

Tí nói thật vì câu nói của Tí chính xác và Tèo là người nói dối

Đây là bài toán suy luận nên online math không được trừ điểm 

1 tháng 3 2017

minh nghi la Teo

23 tháng 1 2022

Tí là người nói thật vì câu nói của Tí là đúng

Tèo là người nói dối

23 tháng 1 2022

tí nói thật, tèo nói dối

-Thần thật thà chắc chắn không pahir là người ngồi bên trái vì nếu vậy thì ngài sẽ không trả lời là thần ở giữa là thần thật thà bởi vì ông li=uôn nói thật . Ông cũng không phải là người ngồi ở giữa vì nếu vậy thì ngài sẽ không trả lời mình là thần khôn ngoan vì ông luôn nói thật . Nên chắc chắn Thần thật thà sẽ ngồi bên phải 

-Vì người bên phải là thần thật thà nên vì ngài luôn nói thật nên thần dối trá sẽ ngồi ở giữa theo câu trả lời của ông 

-Cuối cùng người ngồi bên trái là thần Khôn ngoan

16 tháng 12 2019

Cả 3 câu hỏi của nhà toán học đều nhằm xác định 1 thông tin : Thần ngồi giữa là thần gì? Kết quả có 3 câu trả lời khác nhau.

Ta thấy thần ngồi bên trái không phải là thần thật thà vì ngài nói người ngồi giữa là thần thật thà.

Thần ngồi giữa cũng không phải là thần thật thà vì ngài nói : Tôi là thần khôn ngoan ⇒ Thần ngồi bên phải là thần thật thà  ở giữa là thần dối trá

 ở bên trái là thần khôn ngoan.

18 tháng 7 2021

Tí là người nói dối

Tèo là người nói thật

( mik đoán mò nha )

Trả lời:

Tí là người nói thật vì câu nói của Tí là đúng

Tèo là người nói dối

HT

Một nhóm có 25 người bao gồm những hiệp sĩ, nông nô và những thiếu nữ. Những chàng hiệp sĩ thì luôn nói thật, những người nông nô thì luôn nói dối và những người thiếu nữ luân phiên giữa nói dối và nói thật. Như vậy, nếu một người thiếu nữ trả lời thật cho một câu hỏi thì câu hỏi sau họ sẽ nói dối, và sẽ nói thật ở câu tiếp theo nữa. Khi mỗi người trong 25 người được...
Đọc tiếp

Một nhóm có 25 người bao gồm những hiệp sĩ, nông nô và những thiếu nữ. Những chàng hiệp sĩ thì luôn nói thật, những người nông nô thì luôn nói dối và những người thiếu nữ luân phiên giữa nói dối và nói thật. Như vậy, nếu một người thiếu nữ trả lời thật cho một câu hỏi thì câu hỏi sau họ sẽ nói dối, và sẽ nói thật ở câu tiếp theo nữa. Khi mỗi người trong 25 người được hỏi: “Ngươi có phải hiệp sĩ không?” 17 người trong số đó trả lời “Có”.Khi mỗi người trong 25 người được hỏi: “Ngươi có phải thiếu nữ không?” 12 người trong số đó trả lời “Có”.Khi mỗi trong 25 người được hỏi: “Ngươi có phải nông nô không?” 8 người trong số đó trả lời “Có”.Hỏi có bao nhiêu hiệp sĩ trong nhóm người đó?

0
16 tháng 1 2016

Từ đề bài ta suy ra trong 30 người có đúng 15 cặp hiệp sĩ – kẻ lừa dối là bạn của nhau. Ta có thể dễ dàng đoán được đáp số của bài toán bằng cách “giả định” 15 người ở vị trí lẻ đều là hiệp sĩ. Khi đó, dĩ nhiên bạn của họ đều ngồi cạnh ở các vị trí chẵn và đều là kẻ lừa dối, do đó không có ai nói “Đúng”. Đáp số là 0.

Tuy nhiên, đó chỉ là dự đoán đáp số chứ không phải lời giải. Với cách hỏi ở đề bài, ta biết đáp số là 0. Nhưng để khẳng định điều này, ta phải chứng minh chứ không chỉ là đưa ra một ví dụ như vậy.

Nếu chúng ta sa đà vào việc xét vị trí ngồi của 30 người (ai là hiệp sĩ, ai là kẻ nối dối) thì sẽ rất rối vì có nhiều trường hợp xảy ra. Bí quyết của lời giải là ở nhận xét quan trọng sau: Trong 2 người là bạn của nhau, chỉ có đúng 1 người nói “Đúng” cho câu hỏi "Có phải bạn của anh đang ngồi cạnh anh không?".

Thật vậy, nếu có hai người, 1 hiệp sĩ, 1 kẻ lừa dối là bạn của nhau. Xét 2 trường hợp: 

1) Nếu họ ngồi cạnh nhau thì hiệp sĩ sẽ nói đúng, còn kẻ lừa dối nói “Không”. 

2) Nếu họ không ngồi cạnh nhau thì hiệp sĩ nói “Không”, còn kẻ lừa dối nói “Đúng”. 

Như vậy, vì ta có 15 cặp bạn nên ta có đúng 15 câu trả lời “Đúng”. Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.

Chú ý rằng ta không biết được trong 15 người ở vị trí lẻ có bao nhiêu người là hiệp sĩ, có bao nhiêu người là kẻ lừa dối và họ xếp ở những vị trí nào.

3 tháng 3 2016

Từ đề bài ta suy ra trong 30 người có đúng 15 cặp Hiệp sĩ – Kẻ lừa dối là bạn của nhau. Ta có thể dễ dàng đoán được đáp số của bài toán bằng cách “giả định” 15 người ở vị trí lẻ đều là Hiệp sĩ. Khi đó, dĩ nhiên bạn của họ đều ngồi cạnh họ ở các vị trí chẵn và đều là Kẻ lừa dối, do đó không có ai nói “Đúng”. Đáp số là 0.

Tuy nhiên, đó chỉ là dự đoán đáp số chứ không phải lời giải. Với cách hỏi ở đề bài, ta biết đáp số là 0. Nhưng để khẳng định điều này, ta phải chứng minh chứ không chỉ là đưa ra một ví dụ như vậy.

Nếu chúng ta sa đà vào việc xét vị trí ngồi của 30 người (ai là hiệp sĩ, ai là kẻ nối dối) thì sẽ rất rối vì có nhiều trường hợp xảy ra. Bí quyết của lời giải là ở nhận xét quan trọng sau: Trong 2 người là bạn của nhau, chỉ có đúng 1 người nói “Đúng” cho câu hỏi "Có phải bạn của anh đang ngồi cạnh anh không?".

Thật vậy, nếu có hai người, 1 hiệp sĩ, 1 kẻ lừa dối là bạn của nhau. Xét 2 trường hợp: 

1) Nếu họ ngồi cạnh nhau thì Hiệp sĩ sẽ nói đúng, còn Kẻ lừa dối nói “Không”. 

2) Nếu họ không ngồi cạnh nhau thì Hiệp sĩ nói “Không”, còn Kẻ lừa dối nói “Đúng”. 

Như vậy, vì ta có 15 cặp bạn nên ta có đúng 15 câu trả lời “Đúng”. Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.

Chú ý rằng ta không biết được trong 15 người ở vị trí lẻ có bao nhiêu người là Hiệp sĩ, có bao nhiêu người là Kẻ lừa dối và họ xếp ở những vị trí nào.