Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Thần thật thà chắc chắn không pahir là người ngồi bên trái vì nếu vậy thì ngài sẽ không trả lời là thần ở giữa là thần thật thà bởi vì ông li=uôn nói thật . Ông cũng không phải là người ngồi ở giữa vì nếu vậy thì ngài sẽ không trả lời mình là thần khôn ngoan vì ông luôn nói thật . Nên chắc chắn Thần thật thà sẽ ngồi bên phải
-Vì người bên phải là thần thật thà nên vì ngài luôn nói thật nên thần dối trá sẽ ngồi ở giữa theo câu trả lời của ông
-Cuối cùng người ngồi bên trái là thần Khôn ngoan
Bài này rất đơn giản để xác định
Thần ở giữa tự xưng là mưu mẹo , trong khi đó thần ngồi trái lại bảo thần ngồi giữa là thần nói thật
=> 2 vị thần ở bên trái và ở giữa là thần mưu mẹo và nói dối
=> thần ngồi bên phải là thần nói thật
=) Thần ngồi giữa là thần nói dối (Thần nói thật đã trả lời)
Thần ngồi trái là thần mưu mẹo
235 x 53 + 235 x 46 + 235
=235 x (53 + 46 + 1)
=235 x 100
=23500
Ht ^^
Tí là người nói dối
Tèo là người nói thật
( mik đoán mò nha )
Trả lời:
Tí là người nói thật vì câu nói của Tí là đúng
Tèo là người nói dối
HT
tổng số thóc của cả hai kho khi kho A xuất 18 tấn là 375-18= 357 => A+B= 357
theo bài ta có A-B= 27 (A là số thóc ở kho A, B là số thóc ở kho B)
Như vậy ta có bài toán tổng hiệu, số lớn là A, số bé là B ( dòng này ko cần ghi đâu, cái này mình chỉ giải thích cho bạn nào ko nhớ cách giải bài toán tổng hiệu thôi. Bỏ qua dòng này nhé)
A = (357+27)/2= 192
Do đang tính số thóc kho A sau khi kho A bị lấy mất 27 tấn
=> số thóc của kho A ban đầu là 192+18= 210 (tấn)
Từ đề bài ta suy ra trong 30 người có đúng 15 cặp hiệp sĩ – kẻ lừa dối là bạn của nhau. Ta có thể dễ dàng đoán được đáp số của bài toán bằng cách “giả định” 15 người ở vị trí lẻ đều là hiệp sĩ. Khi đó, dĩ nhiên bạn của họ đều ngồi cạnh ở các vị trí chẵn và đều là kẻ lừa dối, do đó không có ai nói “Đúng”. Đáp số là 0.
Tuy nhiên, đó chỉ là dự đoán đáp số chứ không phải lời giải. Với cách hỏi ở đề bài, ta biết đáp số là 0. Nhưng để khẳng định điều này, ta phải chứng minh chứ không chỉ là đưa ra một ví dụ như vậy.
Nếu chúng ta sa đà vào việc xét vị trí ngồi của 30 người (ai là hiệp sĩ, ai là kẻ nối dối) thì sẽ rất rối vì có nhiều trường hợp xảy ra. Bí quyết của lời giải là ở nhận xét quan trọng sau: Trong 2 người là bạn của nhau, chỉ có đúng 1 người nói “Đúng” cho câu hỏi "Có phải bạn của anh đang ngồi cạnh anh không?".
Thật vậy, nếu có hai người, 1 hiệp sĩ, 1 kẻ lừa dối là bạn của nhau. Xét 2 trường hợp:
1) Nếu họ ngồi cạnh nhau thì hiệp sĩ sẽ nói đúng, còn kẻ lừa dối nói “Không”.
2) Nếu họ không ngồi cạnh nhau thì hiệp sĩ nói “Không”, còn kẻ lừa dối nói “Đúng”.
Như vậy, vì ta có 15 cặp bạn nên ta có đúng 15 câu trả lời “Đúng”. Vì cả 15 người ở vị trí lẻ đã nói “Đúng” nên tất cả những người ở vị trí chẵn đều nói “Không”. Tức là đáp số bằng 0.
Chú ý rằng ta không biết được trong 15 người ở vị trí lẻ có bao nhiêu người là hiệp sĩ, có bao nhiêu người là kẻ lừa dối và họ xếp ở những vị trí nào.
Cả 3 câu hỏi của nhà toán học đều nhằm xác định 1 thông tin : Thần ngồi giữa là thần gì? Kết quả có 3 câu trả lời khác nhau.
Ta thấy thần ngồi bên trái không phải là thần thật thà vì ngài nói người ngồi giữa là thần thật thà.
Thần ngồi giữa cũng không phải là thần thật thà vì ngài nói : Tôi là thần khôn ngoan ⇒ Thần ngồi bên phải là thần thật thà ⇒ ở giữa là thần dối trá
⇒ ở bên trái là thần khôn ngoan.