\(CMR:x^4+4x^2+2014\) vô nghiệm

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2019

\(x^4+4x^2+2014=\left(x^2+2\right)+2000>0\)

=> PT vô nghiệm

12 tháng 5 2019

Ta có : x4 \(\ge\)0  ;      4x2 \(\ge\)0 ; 2014 > 0

=> x4 + 4x2 + 2014 > 0

=> x4 + 4x2 + 2014 vô nghiệm

23 tháng 4 2018

Mình làm theo kiểu lớp 8 nha bạn 

Ta có : 

\(x^2+2x+2\)

\(=\)\(\left(x^2+2x+1\right)+1\)

\(=\)\(\left(x+1\right)^2+1\ge0+1=1>0\)

Vậy \(x^2+2x+2\) vô nghiệm 

Chúc bạn học tốt ~ 

23 tháng 4 2018

\(x^2+2x+2\)

\(\Leftrightarrow\left(x^2+2x+1\right)+1\)

\(\Leftrightarrow\left(x+1\right)^2+1\)

Mà  \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow x^2+2x+2\ge1\forall x\)

Vậy đa thức trên vô nghiệm

4 tháng 5 2017

Do x^4 và 4x^2 lớn hơn hoặc bằng 0 vs mọi x => x^4 + 4x^2 + 1 > 0 => đa thức f(x) =..... vô nghiệm

5 tháng 5 2017

\(f\left(x\right)=x^4+4x^2+1=\left(x^4+4x^2+4\right)-3=\left(x^2+2\right)^2-3\)

Vì \(x^2\ge0\Rightarrow x^2+2\ge0\Rightarrow\left(x^2+2\right)^2\ge4\Rightarrow f\left(x\right)=\left(x^2+2\right)^2-3\ge1>0\)

Vậy f(x) vô nghiệm

20 tháng 5 2018

\(=\left(x^4+x^3+x^2\right)+\left(3x^2+3x+3\right)=x^2\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)

\(=\left(x^2+3\right)\left(x^2+x+1\right)=\left(x^2+3\right)\left(x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)\)

\(=\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)\)

vì \(x^2>=0;3>0\Rightarrow x^2+3>0\)

\(\left(x+\frac{1}{2}\right)^2>=0;\frac{3}{4}>0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)>0\Rightarrow\)đa thức trên vô nghiệm

6 tháng 7 2017

Ta có : C(x) = P(x) + H(x)

=> C(x) = 4x2 - 1 + x4 + 3 

=> C(x) = x4 + 4x2 + 2 

Mà x4 \(\ge0\forall x\)

     4x2 \(\ge0\forall x\)

Nên C(x) = x4 + 4x2 + 2 \(\ge2\forall x\)

=> C(x) = x4 + 4x2 + 2 \(\ne0\forall x\)

Vậy đa thức C(x) vô nhiệm

23 tháng 7 2019

\(P\left(x\right)=5x^5+5x^4-2x^2+5x^2-x^5-4x^4+1-4x^5=x^4+3x^2+1\)

Mà \(x^4\ge0;3x^2\ge0=>x^4+3x^2+1\ge1>0\) nên \(P\left(x\right)\) vô nghiệm

Hok tốt nha !

23 tháng 7 2019

P(x) = 5x5 + 5x4 - 2x2 + 5x2 - x5 - 4x4 + 1 - 4x5

P(x) = (5x5 - x5 - 4x5) + (5x4 - 4x4) - (2x2 - 5x2) + 1

P(x) = x4 + 3x2 + 1

Ta có: x4 \(\ge\)0 \(\forall\)x; 3x2 \(\ge\)\(\forall\)x

=> x4 + 3x2 + 1 \(\ge\)\(\forall\)x

=> P(x) \(\ne\)0

=> P(x) vô nghiệm

21 tháng 7 2016

P(x)=......11x-6( chứ ko fải 11x-66 nha)

Ta có : x2 - 4x + 16 

= x2 - 4x + 4 + 12 

= (x - 2)2 + 12 

Vì \(\left(x-2\right)^2\ge0\forall x\)

Nên : (x - 2)2 + 12 \(>0\forall x\)

Hay x2 - 4x + 16 \(>0\forall x\)

Vậy đa thức trên vô nghiệm