K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2020

Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

Ta có: \(3^{n+2}+3^n=3^n\left(3^2+1\right)=10.3^n⋮10\)

\(2^{n+2}+2^n=2^n\left(4+1\right)=5.2^n=10.2^{n-1}⋮10\)

=> \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10

13 tháng 12 2015

ai ủng hộ 9 li-ke tròn 100 Điểm hỏi đáp , thanks trước nha

6 tháng 2 2021

Đây nè bạn

2 tháng 4 2021

=>(3^n+2)+(3^n)-(2^n+2)-(2^n)=3^n((3^2)+1)-2^n((2^2)+1)=(3^n)*10-(2^n)*5=(3^n)*10-(2^n-1)*5*2=(3^n)*10-(2^n-1)*10=10*((3^n)-(2^n-1) chia hết cho 10

=>(3^n+2)-(2^n+2)+(3^n)-(2^n)chia hết cho 10

7 tháng 2 2018

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)+\left(-2^{n+2}-2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

Vậy 3n+2 - 2n+2 + 3n - 2n chia hết cho 10

7 tháng 2 2018

Ta có 3n+2-2n+2+3n-2n

=3n.9-2n.5+3n-2n

= 3n.(9+1)-2n.(4+1)

=3n.10-2n.5=3n.10-2n-1.10

Do 3n.10 chia hết cho 10 với mọi số nguyên dương n

2n-1.10 chia hết cho 10 với mọi số nguyên dương n

Nên 3n+2-2n+2+3n-2n chia hết cho 10 với mọi số nguyên dương n

13 tháng 6 2018

(\(3^{n+2}+3^n\))-\(\left(2^{n+2}+2^n\right)\)=\(3^n\left(3^2+1\right)-2^n\left(4+1\right)\)=\(3^n\cdot10-3^{n-1}\left(5\cdot2\right)=10\left(3^n-3^{n-1}\right)\). Vì 10 chia hết cho 10 nên \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10

13 tháng 6 2018

\(3^{n+2}-2^{n+2}+3^n-2^n=3^{n+2}+3^n-2^{n+2}+2^n\)\(3^{n+2}+3^n=9.3^n+3^n=10.3^n\left(10.3^n⋮10\right)\)

\(2^{n+2}+2^n=4.2^n+2^n=5.2^n\)( Cũng chia hết cho 10 )

\(\Rightarrow3^{n+2}+2^{n+2}+3^n-2^n⋮10\left(đpcm\right)\)

29 tháng 10 2017

=\(3^n\).\(3^2\)-\(2^n\).\(2^2\)+\(3^n\)-\(2^n\)

=\(^{3^n}\).9 - \(2^n\).4 +\(^{3^n}\)\(2^n\)

=10 .\(3^n\)-5.\(2^n\)

=10.\(3^n\)-5.2.\(2^{n-1}\)

=10 .(\(3^n\)-\(2^n\) )

=> chia hết cho 10

29 tháng 10 2017

Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)

\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot2\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(dpcm\right)\)