K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2016

Áp dụng bất đẳng thức cô-si, ta có:

\(a+b\ge2\sqrt{ab},b+c\ge2\sqrt{bc},c+a\ge2\sqrt{ca}\)

<=>\(a+b+b+c+c+a\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\)

<=>\(2.\left(a+b+c\right)\ge2.\sqrt{ab}+2.\sqrt{bc}+2.\sqrt{ca}\)

<=>\(3.\left(a+b+c\right)\ge a+b+c+2.\sqrt{ab}+2.\sqrt{bc}+2.\sqrt{ca}\)

<=>\(3.\left(a+b+c\right)\ge\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\)

<=>\(\sqrt{3.\left(a+b+c\right)}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)

<=>\(\frac{\sqrt{3}.\sqrt{a+b+c}}{9}\ge\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{9}\)

<=>\(\sqrt{\frac{a+b+c}{3}}\ge\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{9}\)

Dấu "=" xảy ra khi: a=b=c

=>ĐPCM

7 tháng 10 2016

\(\sqrt{\frac{a+b+c}{3}}\ge\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{3}\)

\(\Leftrightarrow3\left(a+b+c\right)\ge a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(\Leftrightarrow\)a +b + c \(\ge\)\(1\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)(đúng)

Vậy cái ban đầu đúng

28 tháng 6 2019

a. Phải là nhỏ hơn hẳn nhé, ko có dấu = đâu

CM:

a,b,c là 3 cạnh 1 tam giác\(\Rightarrow\left(a-b\right)^2< c^2\Rightarrow a^2+b^2< c^2+2ab\Rightarrow\sqrt{a^2+b^2}< \sqrt{c^2+2ab}\)

cm tương tự ta có: \(VT< \sqrt{c^2+2ab}+\sqrt{b^2+2ac}+\sqrt{a^2+2bc}\)

Theo BĐT Bunhia \(\Rightarrow VT< \sqrt{a^2+2bc}+\sqrt{b^2+2ac}+\sqrt{c^2+2ab}\)\(\le\sqrt{\left(1+1+1\right)\left(a^2+b^2+c^2+2ab+2bc+2ac\right)}=\sqrt{3\left(a+b+c\right)^2}=\sqrt{3}.\left(a+b+c\right)\)

29 tháng 6 2019

2, (cần cù bù thông minh) Quy đồng

\(\left|\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}\right|=...=\left|\frac{\left(b-c\right)\left(a-c\right)\left(a-b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right|\)        (chỗ ba chấm là bước quy đồng tự làm)

                                                                       \(=\frac{\left|a-b\right|}{a+b}.\frac{\left|b-c\right|}{b+c}.\frac{\left|a-c\right|}{a+c}\)

                                                                         \(\le\frac{ \left|a-b\right|}{2\sqrt{ab}}.\frac{\left|b-c\right|}{2\sqrt{bc}}.\frac{\left|a-c\right|}{2\sqrt{ca}}\left(Cauchy\right)\)

                                                                            \(< \frac{c}{2\sqrt{ab}}.\frac{a}{2\sqrt{bc}}.\frac{b}{2\sqrt{ca}}\left(Bđt\Delta\right)\)

                                                                              \(=\frac{1}{8}\left(đpcm\right)\)

2 tháng 7 2018

2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)

Dấu "=" xảy ra <=> a = b = c

NV
22 tháng 4 2019

Điều kiện: \(a;b;c\) dương

Ta có:

\(P=\sum\sqrt{\frac{a}{a+b}}=\sum\sqrt{a\left(b+c\right)}.\frac{1}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)

\(\Rightarrow P^2\le\left(\sum a\left(a+b\right)\right)\left(\sum\frac{1}{\left(a+b\right)\left(b+c\right)}\right)=\frac{4\left(ab+ac+bc\right)\left(a+b+c\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)

\(\Rightarrow\frac{P^2}{4}\le\frac{\left(ab+ac+bc\right)\left(a+b+c\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}=\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)+abc}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}=1+\frac{abc}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)

\(\Rightarrow\frac{P^2}{4}\le1+\frac{abc}{2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}}=\frac{9}{8}\)

\(\Rightarrow P^2\le\frac{9}{2}\Rightarrow P\le\frac{3}{\sqrt{2}}\)

Dấu "=" xảy ra khi \(a=b=c\)

6 tháng 7 2019

a) Ta có BĐT:

\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)ab\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)

Tương tự cho 2 bất đẳng thức còn lại rồi cộng theo vế:

\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=VP\)

Khi \(a=b=c\)

6 tháng 7 2019

cảm ơn ạ

10 tháng 7 2019

\(3,\)Áp dụng bđt Mincopski \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)hai lần có

\(VT\ge\sqrt{\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{yz}+\sqrt{zx}\right)^2}+\sqrt{z+xy}\)

       \(\ge\sqrt{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)

       \(=\sqrt{x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)

       \(=\sqrt{1+2t+t^2}\left(t=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
        \(=\sqrt{\left(t+1\right)^2}=t+1=VP\left(Đpcm\right)\)

10 tháng 7 2019

\(2,\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{a}.\sqrt{b}}}=\sqrt{\sqrt{ab}}\left(đpcm\right)\)

24 tháng 1 2018

bđt cần c/m tương đương với:

\(\left(\frac{b+c}{\sqrt{a}}+\sqrt{a}\right)+\left(\frac{a+c}{\sqrt{b}}+\sqrt{b}\right)+\left(\frac{a+b}{\sqrt{c}}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\\ \ \)\(\left(a+b+c\right)\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)

Mặt khác:

\(a+b+c\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{3}\)

\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\frac{9}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

=> \(VT\ge3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

Ta cần c/m: 

\(3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+3\)

<=> \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge3\sqrt[3]{\sqrt{abc}}=3\)(BĐt Cô-si)

xong rồi bạn nhé

25 tháng 12 2019

dit me may

9 tháng 9 2018

k mk đi

ai k mk

mk k lại

thanks

9 tháng 11 2018

Đề như này đúng ko \(3\le\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}< 3+\sqrt{a}+\sqrt{b}+\sqrt{c}\)

Dấu \("\ge"\) thứ 2 dấu "=" ko xảy ra 

Đặt \(A=\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\)

\(A\ge3\sqrt[3]{\frac{\left(1+\sqrt{a}\right)\left(1+\sqrt{b}\right)\left(1+\sqrt{c}\right)}{\left(1+\sqrt{b}\right)\left(1+\sqrt{c}\right)\left(1+\sqrt{a}\right)}}=3\) \(\left(1\right)\)

CM : \(\frac{1+\sqrt{x}}{1+\sqrt{y}}< 1+\sqrt{x}\) ( với a, b nguyên dương ) 

\(\Leftrightarrow\)\(\left(1+\sqrt{x}\right)\left(1+\sqrt{y}\right)-\left(1+\sqrt{x}\right)>0\)

\(\Leftrightarrow\)\(\left(1+\sqrt{x}\right)\sqrt{y}>0\) ( luôn đúng với mọi a, b nguyên dương ) 

\(\Rightarrow\)\(A< 1+\sqrt{a}+1+\sqrt{b}+1+\sqrt{c}=3+\sqrt{a}+\sqrt{b}+\sqrt{c}\) \(\left(2\right)\)

Từ (1) và (2) suy ra \(3\le\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}< 3+\sqrt{a}+\sqrt{b}+\sqrt{c}\) ( đpcm ) 

Chúc bạn học tốt ~ 

25 tháng 6 2020

Đặt \(a=x^3;b=y^3;c=z^3\)

\(BĐT\Leftrightarrow\sqrt[3]{\frac{x^3}{y^3+z^3}}+\sqrt[3]{\frac{y^3}{z^3+x^3}}+\sqrt[3]{\frac{z^3}{x^3+y^3}}\)

Ta đi chứng minh : \(\sqrt[3]{\frac{x^3}{y^3+z^3}}\ge\sqrt{\frac{x^2}{y^2+z^2}}\)

\(\Leftrightarrow y^2z^2\left[\left(y-z\right)^2+2\left(y^2+z^2\right)\right]\ge0\) ( luôn đúng )

Nếu trong 3 số x; y; z có 1 số bằng 0 thì \(VT=\sqrt[3]{\frac{y^3}{z^3}}+\sqrt[3]{\frac{z^3}{y^3}}\ge2\) theo AM - GM

Nếu cả 3 số x; y; z đều dương thì theo AM - GM ta dễ có:

\(LHS=\Sigma\sqrt{\frac{x^2}{y^2+z^2}}=\Sigma\frac{x^2}{\sqrt{x^2\left(y^2+z^2\right)}}\ge\Sigma\frac{2x^2}{x^2+y^2+z^2}=2\)

Vậy ta có đpcm

25 tháng 6 2020

Không có mô tả ảnh.

hoặc bạn có thể xem cách khác tại đây,vào TKHĐ của mình để xem hình ảnh nhé !