K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2020

Ta có : n không chia hết cho 3 

Xét cá trường hợp :

+, n chia 3 dư 1

n=3k+1 => n 2=( 3k+1 ) .( 3k+1 )=9k2+6k+1

+, n chia 3 dư 2

n=3k+2 => n2=(3k+2).(3k+2)=9k2+ 12k+4=(9k2+12k+3)+1 

Vậy n2 chia 3 dư 1 => đpcm

2 tháng 3 2017

ko bt ban oi

31 tháng 8 2019

1. Gọi số tự nhiên bất kì là a

Ta có: a + (a+1) + (a+2) = 3a + 3 chia hết cho 3

Vậy…

31 tháng 8 2019

2. Ta có 2^15 = 2.2…2.2 (15 số 2) chia hết cho 2

    Lại có 424 = 2.212 chia hết cho 2

Vậy…

Câu 2:

n lẻ nên n=2k+1

\(n^2+n+1\)

\(=\left(2k+1\right)^2+2k+1+1\)

\(=4k^2+4k+1+2k+2\)

\(=4k^2+6k+3=2\left(2k^2+3k\right)+3⋮̸2\)

hay \(n^2+n+1⋮̸8\)

4 tháng 11 2015

n=7

nha ban 

3 tháng 1 2016

\(1\)

3 tháng 1 2016

 du 1 phai ko ?????????????

8 tháng 11 2015

tich minh noi cho

 

25 tháng 2 2016

k rồi đó sao không nói

3 tháng 11 2017

Đề bài của em bị sai nhé.

Ta có thể sửa thành hai đề bài đúng:

Bài 1: Cho n là số tự nhiên, n>3, n chia hết cho 3. CMR n2 chia hết 3.

Giải: 

n chia hết 3 nên n có dạng 3k (k là số tự nhiên)

Vậy n2 = (3k)2 = 9k2 cũng sẽ chia hết cho 3.

Bài 2: Cho n là số tự nhiên, n>3, n  không chia hết cho 3. CMR n2:3 dư 1

Giải:

Do n không chia hết cho 3 nên n = 3k + 1 hoặc n = 3k + 2 (k là số tự nhiên)

Với n = 3k + 1, n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1.

Với n = 3k + 2, n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 chia 3 dư 1.

Vậy n2 luôn chia 3 dư 1.

15 tháng 8 2018

Bài giải :  

n chia hết 3 nên n có dạng 3k (k là số tự nhiên)

Vậy n2 = (3k)2 = 9k2 cũng sẽ chia hết cho 3.

Bài 2: Cho n là số tự nhiên, n>3, n  không chia hết cho 3. CMR n2:3 dư 1

Giải:

Do n không chia hết cho 3 nên n = 3k + 1 hoặc n = 3k + 2 (k là số tự nhiên)

Với n = 3k + 1, n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1.

Với n = 3k + 2, n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 chia 3 dư 1.

Vậy n2 luôn chia 3 dư 1.

 Đúng 2  Sai 1

3 tháng 12 2018

n ko chia hết cho 3 nên có 2 dạng:3k+1,3k+2

với n=3k+1

\(\Rightarrow\left(3k+1\right)\left(3k+1\right)=9k+6k+1\)chia 3 dư 1

với n=3k+2

\(\Rightarrow\left(3k+2\right)\left(3k+2\right)=9k+12k+4\)chia 3 dư 1

Vậy............

3 tháng 12 2018

n ko chia hết cho 3 => n : 3 dư 1 hoặc 2

n chia 3 dư 1 : n = 3k + 1 => n^2 = ( 3k +1 ) x (3k + 1 ) = 9k^2 + 6k +1 = 3.(3k^2+2k) + 1 =>n^2 : 3 dư 1

n chia 3 dư 2 : n = 3k + 2 => n^2 = ( 3k +2 ) x (3k + 2 ) = 9k^2 +12k +4 = 3.(3k^2+4k+1) + 1 =>n^2 : 3 dư 1

VÂY...........