Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không chuyên Toán nhưng theo kinh nghiệm thì khi làm mấy cái chững minh kiểu này thì e cứ cho nó là đúng rồi làm ngược lại cho nó dễ hơn.
Đặt : \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}\)=A
Ta thấy A< 7/12
Cái đặc biệt ở đây là phân số 7/12
\(\frac{7}{12}=\frac{1}{4}+\frac{1}{3}\)
< nhìn dễ ra thôi 3+4=7 ; 3x4=12 >
Tiếp thep e tách cái phần dãy A ra thành 2 phần đi
\(A=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{....1}{80}\right)\)
Lại tiếp tục phân tích:
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+.....+\frac{1}{60}\)< có 20 phân số 1/60>
Vì 1/41 > 1/60 ; 1/42>1/60.....
<=> \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}>\frac{20}{60}=\frac{1}{3}\left(1\right)\)
Tương tự:
\(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{20}{80}=\frac{1}{4}\left(2\right)\)
Từ (1) và(2) suy ra A> 1/3+1/4 =7/12
\(\frac{1}{41}+\frac{1}{42}+....+\frac{1}{80}>\frac{7}{12}\) (đpcm)
Cái đoạn
Lại tiếp tục phân tích... em không hiểu mấy, chị gỉ thích rõ hơn được không ạ?
Đặt A=\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+.....................+\frac{1}{80}\)(có 40 số hạng)
+)Ta có:A=\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+.....................+\frac{1}{80}\)
=>A=\(\left(\frac{1}{41}+\frac{1}{42}+............................+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...............+\frac{1}{80}\right)\)
Có 20 số hạng Có 20 số hạng
\(>\left(\frac{1}{60}+\frac{1}{60}+....................+\frac{1}{60}\right)+\left(\frac{1}{80}+\frac{1}{80}+.............+\frac{1}{80}\right)\)
Có 20 số hạng Có 20 số hạng
=>A>\(20.\frac{1}{60}+20.\frac{1}{80}=\frac{1}{3}+\frac{1}{4}\)=\(\frac{7}{12}\)
=>A\(\frac{7}{12}\)(1)
+)Ta lại có:A= \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+.....................+\frac{1}{80}\) (có 40 số hạng)
\(< \left(\frac{1}{41}+\frac{1}{41}+....................+\frac{1}{41}\right)\)
Có 40 số hạng
=>A\(< 40.\frac{1}{41}=\frac{40}{41}< 1\)
=>A<1(2)
+)Từ (1) và (2)
=>\(\frac{7}{12}< A< 1\)
Vậy \(\frac{7}{12}< A< 1\)
Chúc bn học tốt
Chứng tỏ rằng: \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
Nhận xét : Từ \(\frac{1}{41}\rightarrow\frac{1}{80}\)có 40 phân số . Gọi tổng các phân số đó là A.Ta có thể nhóm các phân số thành hai nhóm rồi so sánh các phân số có tử giống nhau.
Ta có : \(A=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}\)
\(=\left[\frac{1}{41}+\frac{1}{42}+...+\frac{1}{59}+\frac{1}{60}\right]+\left[\frac{1}{61}+\frac{1}{62}+...+\frac{1}{79}+\frac{1}{80}\right]\)
Vì \(\frac{1}{41}>\frac{1}{42}>...>\frac{1}{60}>\frac{1}{61}>...>\frac{1}{80}\) nên \(A>\left[\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}+\frac{1}{60}\right]+\left[\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}+\frac{1}{80}\right]\)
\(A>\frac{20}{80}+\frac{20}{80}=\frac{1}{3}+\frac{1}{4}=\frac{4+3}{12}=\frac{7}{12}\)
Vậy : \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
Ta có: 7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12
=> ĐPCM ( ĐPCM có nghĩa là điều phải chứng minh)
~ Học tốt ~ K cho mk nhé! Thank you.
bn vào các câu hỏi tương tự là sẽ thấy mấy câu y chang câu của bn thôi
Ta có :
\(\frac{1}{41}>\frac{1}{60};\frac{1}{42}>\frac{1}{60};\frac{1}{43}>\frac{1}{60};....;\frac{1}{60}=\frac{1}{60}\)
\(\Rightarrow\frac{1}{41}+\frac{1}{42}+....+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=20.\frac{1}{60}=\frac{1}{3}\)(1)
\(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};\frac{1}{63}>\frac{1}{80};....;\frac{1}{80}=\frac{1}{80}\)
\(\Rightarrow\frac{1}{61}+\frac{1}{62}+....+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+....+\frac{1}{80}=20.\frac{1}{80}=\frac{1}{4}\)(2)
Từ (1) và (2) \(\Rightarrow y=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+....+\frac{1}{80}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)(đpvm)
Đặt S=\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}\)
Ta thấy S có 40 số hạng
ta có:
S=\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}\)=\(\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)\)
\(+\left(\frac{1}{71}+\frac{1}{72}+...+\frac{1}{80}\right)\)(mỗi 1 nhóm có 100 số hạng)
>\(\left(\frac{1}{50}+...+\frac{1}{50}\right)+\left(\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{70}+...+\frac{1}{70}\right)+\left(\frac{1}{80}+...+\frac{1}{80}\right)\)(mỗi 1 nhóm có 10 số hạng)
=\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\)=\(\frac{533}{840}\)>\(\frac{490}{840}\)=\(\frac{7}{12}\)
vậy S>\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}\)(đpcm)
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{60}>\frac{1}{60}.\left(60-41+1\right)=\frac{1}{60}.20=\frac{1}{3}\)(1)
\(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{80}>\frac{1}{80}.\left(80-61+1\right)=\frac{1}{80}.20=\frac{1}{4}\)(2)
Từ (1)(2)=>\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\left(đpcm\right)\)
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12
nhớ đúng cái
tìm số tự nhiên a lớn nhất sao cho:13 ;15 ;61 chia hết cho a đều dư 1
Tham khảo
Câu hỏi của Sakura kun - Toán lớp 6 - Học toán với OnlineMath