\(\frac{1}{3^2}+\frac{1}{6^2}+\frac{1}{9^2}+...+\frac{1}{2013^2}< \frac{1}{5}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

\(A< \frac{1}{1\cdot3}+\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+..........+\frac{1}{2011\cdot2013}\)

\(\frac{1}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+.....+\frac{1}{2010}-\frac{1}{2013}\right)\)

\(\frac{1}{3}\left(1-\frac{1}{2013}\right)=\frac{1}{3}\cdot\frac{2012}{2013}\)

theo mình là vậy thôi chứ ko chắc chắn đouo

10 tháng 5 2017

bạn nhok ma kết làm gần đúng nhưng vẫn sai nhé

Đặt biểu thức là A

\(A=\frac{1}{9}\left(\frac{1}{1}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{671^2}\right)< \frac{1}{9}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{671.672}\right)\)

\(\Rightarrow A< \frac{1}{9}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{671}-\frac{1}{672}\right)\)

\(\Rightarrow A< \frac{1}{9}\left(1-\frac{1}{672}\right)=\frac{1}{9}.\frac{671}{672}< \frac{1}{5}.1=\frac{1}{5}\)

10 tháng 5 2017

ta có:

1/3^2= 1/9<1/5

1/6^2=1/36<1/5

.

.

.

1/2013^2=1/4052169<1/5

=>1/3^2+1/6^2+....+1/2013^2<1/5

10 tháng 5 2017

bạn ơi cách bạn ko có hiệu quả đâu 

đúng là bt ấy nhỏ hơn \(\frac{1}{5}\)nhưng bạn làm vậy lá sai ngay đấy

thế mình hỏi bạn 1<2;1.1<2nhuwng tổng 1+1.1>2

với phân số cũng thế 

25 tháng 2 2017

2.a) Vào question 126036

b) Vào question 68660

26 tháng 4 2018

\(a)\) Đặt \(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}\) ta có : 

\(A=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2013+2}{2013}\)

\(A=\frac{2014}{2014}-\frac{1}{2014}+\frac{2015}{2015}-\frac{1}{2015}+\frac{2013}{2013}+\frac{2}{2013}\)

\(A=1-\frac{1}{2014}+1-\frac{1}{2015}+1+\frac{2}{2013}\)

\(A=\left(1+1+1\right)-\left(\frac{1}{2014}+\frac{1}{2015}-\frac{2}{2013}\right)\)

\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\left(\frac{1}{2013}+\frac{1}{2013}\right)\right]\)

\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2013}\right]\)

\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]\)

Mà : 

\(\frac{1}{2014}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2014}-\frac{1}{2013}< 0\)

\(\frac{1}{2015}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2015}-\frac{1}{2013}< 0\)

Từ (1) và (2) suy ra : \(\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)< 0\) ( cộng theo vế ) 

\(\Rightarrow\)\(-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>0\)

\(\Rightarrow\)\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>3\) ( cộng hai vế cho 3 ) 

\(\Rightarrow\)\(A>3\) ( điều phải chứng minh ) 

Vậy \(A>3\)

Chúc đệ học tốt ~ 

26 tháng 4 2018

c, 

\(C=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{9999}{10000}\)

vì \(\frac{1}{2}< \frac{2}{3}\)

\(\frac{3}{4}< \frac{4}{5}\)

\(\frac{5}{6}< \frac{6}{7}\)

.............................

\(\frac{9999}{10000}< \frac{10000}{10001}\)

nên \(C^2< \frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{10000}{10001}\)

\(\Rightarrow C^2< \frac{1}{10001}< \frac{1}{10000}\)

\(\Rightarrow C< \frac{1}{100}\)

bt lm mỗi một câu :v

,mình sửa lại đề:

\(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}< 3\)

xóa các chữ số ở tử và mẫu: 2014 và 2014,2015 và 2015

=\(\frac{2013}{2013}\)

=\(1\)

vì \(1>3\) nên \(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}>3\)

28 tháng 2 2017

S = 0.5397677312

12 tháng 3 2017

không biết

13 tháng 5 2017

ta có:

1/22+1/32+....+1/20132< 1/2+1/2.3+...+1/2012.2013

                                    =1-1/2+1/2-1/3+....+1/2012-1/2013

                                    =1- 1/2013

Vì 1/22+1/32+...+1/20132<1-1/2013

=> dãy trên < 1 (đpcm)

13 tháng 5 2017

Bài này nhiều người đăng lắm bạn

Vào câu hỏi tương tự là ra liền