K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2019

\(\sqrt{4x^2+4x+1+9}\)  +\(\sqrt{x^2-2x+1+16}\)

=\(\sqrt{\left(2x+1\right)^2+9}\)+\(\sqrt{\left(x+1\right)^2+16}\)

Do: (2x+1)2>(x+1)2\(\ge\)0

Nên:\(\sqrt{4x^2+4x+10}\)+\(\sqrt{x^2-2x+17}\)\(\ge\)\(\sqrt{9}\)+\(\sqrt{16}\)=7

15 tháng 9 2016

đề j v

Bài 1 : Rút gọn biểu thức với giả thiết các biểu thức đều có nghĩaa) A = 4√25x4−83√9x4−43x√9x354(x>0)425x4−839x4−43x9x354(x>0)b) B = x2+34√1−4x+4x2−32(x≤12)x2+341−4x+4x2−32(x≤12)Bài 3 : Giải PTa) 12√x−1−32√9x−9+24√x−164=−1712x−1−329x−9+24x−164=−17b) √4x2−9=2√2x+34x2−9=22x+3c) 3x−7√x+4=03x−7x+4=0Bài 4 : Trục căn thức mẫu và rút...
Đọc tiếp

Bài 1 : Rút gọn biểu thức với giả thiết các biểu thức đều có nghĩa

a) A = 4√25x4−83√9x4−43x√9x354(x>0)425x4−839x4−43x9x354(x>0)

b) B = x2+34√1−4x+4x2−32(x≤12)x2+341−4x+4x2−32(x≤12)

Bài 3 : Giải PT

a) 12√x−1−32√9x−9+24√x−164=−1712x−1−329x−9+24x−164=−17

b) √4x2−9=2√2x+34x2−9=22x+3

c) 3x−7√x+4=03x−7x+4=0

Bài 4 : Trục căn thức mẫu và rút gọn

a) 9√393

b) 3√5−√235−2

c) √2+1√2−12+12−1

d) 17+4√3+17−4√317+43+17−43

Vậy thoiiiii :))) Giúp em với mọi người :")))

Bài 1 : Rút gọn biểu thức với giả thiết các biểu thức đều có nghĩa

a) A = 4√25x4−83√9x4−43x√9x354(x>0)425x4−839x4−43x9x354(x>0)

b) B = x2+34√1−4x+4x2−32(x≤12)x2+341−4x+4x2−32(x≤12)

Bài 3 : Giải PT

a) 12√x−1−32√9x−9+24√x−164=−1712x−1−329x−9+24x−164=−17

b) √4x2−9=2√2x+34x2−9=22x+3

c) 3x−7√x+4=03x−7x+4=0

Bài 4 : Trục căn thức mẫu và rút gọn

a) 9√393

b) 3√5−√235−2

c) √2+1√2−12+12−1

d) 17+4√3+17−4√317+43+17−43

Vậy thoiiiii :))) Giúp em với mọi người :")))

0
9 tháng 5 2019

24 tháng 12 2022

\(\sqrt{4x^2-4x+1}=x-1\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=x-1\)

\(\Leftrightarrow\left|2x-1\right|=x-1\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x-1\\2x-1=1-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

VT
24 tháng 12 2022

\(\sqrt{4x^2-4x+1}=x-1\)

\(\left|2x-1\right|=x-1\)

TH1: \(x< \dfrac{1}{2}\) phương trình trên trở thành:

\(1-2x=x-1\Leftrightarrow x=\dfrac{2}{3}\) (không thỏa mãn \(x< \dfrac{1}{2}\))

TH2: \(x\ge\dfrac{1}{2}\) phương trình trên trở thành:

\(2x-1=x-1\Leftrightarrow x=0\) (không thỏa mãn \(x\ge\dfrac{1}{2}\))

Vậy phương trình đã cho vô nghiệm.

27 tháng 2 2022

BÀI 1. Giải các phương trình sau bằng công thức nghiệm hoặc  (công thức nghiện thu gọn).

1) x2 - 11x + 38 = 0 ;

2) 6x2 + 71x + 175 = 0 ;

3) 5x2 - 6x + 27 =0 ;

4) - 30x2 + 30x - 7,5 = 0 ;

5) 4x2 - 16x + 17 = 0 ;

6) x2 + 4x - 12 = 0 ;

27 tháng 2 2022

Được chưa bạn?

20 tháng 6 2021

`a)x^2>4`

`<=>sqrtx^2>sqrt4`

`<=>|x|>2`

`<=>` \(\left[ \begin{array}{l}x>2\\x<-2\end{array} \right.\) 

`b)x^2<9`

`<=>\sqrtx^2<sqrt9`

`<=>|x|<3`

`<=>-3<x<3`

`c)(x-1)^2>=4`

`<=>\sqrt{(x-1)^2}>=sqrt4`

`<=>|x-1|>=2`

`<=>` \(\left[ \begin{array}{l}x-1 \ge 2\\x-1 \le -2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x \ge 3\\x \le -1\end{array} \right.\) 

`d)(1-2x)^2<=0,09`

`<=>\sqrt{(1-2x)^2}<=sqrt{0,09}`

`<=>|2x-1|<=0,3`

`<=>-0,3<=2x-1<=0,3`

`<=>0,7<=2x<=1,3`

`<=>0,35<=x<=0,65`

`e)x^2+6x-7>0`

`<=>x^2-x+7x-7>0`

`<=>x(x-1)+7(x-1)>0`

`<=>(x-1)(x+7)>0`

TH1:

\(\left[ \begin{array}{l}x-1>0\\x+7>0\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x>1\\x>-7\end{array} \right.\) 

`<=>x>1`

TH2"

\(\left[ \begin{array}{l}x-1<0\\x+7<0\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x<1\\x<-7\end{array} \right.\) 

`<=>x<-7`

`f)x^2-x<2`

`<=>x^2-x-2<0`

`<=>x^2-2x+x-2<0`

`<=>x(x-2)+x-2<0`

`<=>(x-2)(x+1)<0`

`<=>` \(\begin{cases}x-2<0\\x+1>0\\\end{cases}\)

`<=>` \(\begin{cases}x<2\\x>-1\\\end{cases}\)

`<=>-1<x<2`

20 tháng 6 2021

a) x2 > 4

<=> \(\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\)

b) \(x^2< 9\)

<=> \(-3< x< 3\)

c) \(\left(x-1\right)^2\ge4\)

<=> \(\left[{}\begin{matrix}x-1\ge2< =>x\ge3\\x-1\le-2< =>x\le-1\end{matrix}\right.\)

d) \(\left(1-2x\right)^2\le0,09\)

<=> \(-0,3\le1-2x\le0,3\)

<=> \(1,3\ge2x\ge0,7\)

<=> \(0,65\ge x\ge0,35\)

e) \(x^2+6x-7>0\)

<=> \(\left(x+7\right)\left(x-1\right)>0\)

<=> \(\left[{}\begin{matrix}x-1>0< =>x>1\\x+7< 0< =>x< -7\end{matrix}\right.\)

f) \(x^2-x< 2\)

<=> \(x^2-x-2< 0\)

<=> \(\left(x-2\right)\left(x+1\right)< 0\)

<=> \(\left\{{}\begin{matrix}x+1>0< =>x>-1\\x-2< 0< =>x< 2\end{matrix}\right.\)

<=> -1 < x < 2

g) \(4x^2-12x\le\dfrac{-135}{16}\)

<=> \(64x^2-192x+135\le0\)

<=> (8x - 15)(8x - 9) \(\le0\)

<=> \(\left\{{}\begin{matrix}8x-15\le0< =>x\le\dfrac{15}{8}\\8x-9\ge0< =>x\ge\dfrac{9}{8}\end{matrix}\right.\)

<=> \(\dfrac{9}{8}\le x\le\dfrac{15}{8}\)

11 tháng 10 2018

câu 2  x = 1 

câu 3  x = 4/3

câu 4 x = 9

kết quả 

1 tháng 6 2021

a) PT \(\Leftrightarrow\left(x+1\right)^4+\sqrt{\left(x+1\right)^2+9}=3\).

Ta có \(\left(x+1\right)^4+\sqrt{\left(x+1\right)^2+9}\ge\sqrt{9}=3\).

Đẳng thức xảy ra khi và chỉ khi x = -1.

Vậy..

1 tháng 6 2021

b) \(x^2=\sqrt{x^3-x^2}+\sqrt{x^2-x}\)

Đk: \(\left\{{}\begin{matrix}x^3-x^2\ge0\\x^2-x\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(x-1\right)\ge0\\x\left(x-1\right)\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x=0\end{matrix}\right.\\\left[{}\begin{matrix}x\ge1\\x\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x\ge1\end{matrix}\right.\)

Thay x=0 vào pt thấy thỏa mãn => x=0 là một nghiệm của pt

Xét \(x\ge1\) 

Pt \(\Leftrightarrow x^4=\left(\sqrt{x^3-x^2}+\sqrt{x^2-x}\right)^2\le2\left(x^3-x\right)\) (Theo bđt bunhiacopxki)

\(\Leftrightarrow x^4\le2x\left(x^2-1\right)\le\left(x^2+1\right)\left(x^2-1\right)=x^4-1\)

\(\Leftrightarrow0\le-1\) (vô lí)

Vậy x=0

c) \(\sqrt{x-1}+\sqrt{3-x}+x^2+2x-3-\sqrt{2}=0\)  (đk: \(1\le x\le3\))

Xét x-1=0 <=> x=1 thay vào pt thấy thỏa mãn => x=1 là một nghiệm của pt

Xét \(x\ne1\)

Pt\(\Leftrightarrow\dfrac{x-1}{\sqrt{x-1}}+\dfrac{1-x}{\sqrt{3-x}+\sqrt{2}}+\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3\right)=0\) (1)

Xét \(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3\)

Có \(\sqrt{3-x}+\sqrt{2}\ge\sqrt{2}\) 

\(\Leftrightarrow\dfrac{-1}{\sqrt{3-x}+\sqrt{2}}\ge-\dfrac{1}{\sqrt{2}}\)

Có \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-1}}>0\\x+3\ge4\end{matrix}\right.\)  \(\Rightarrow\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3>0-\dfrac{1}{\sqrt{2}}+4>0\)

Từ (1) => x-1=0 <=> x=1

Vậy pt có nghiệm duy nhất x=1