K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2020

\(\text{Đặt: }\frac{a}{c}=\frac{b}{d}=k\text{ khi đó: }a=ck;b=dk\)

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{c^2k^2+d^2k^2}{c^2+d^2}=k^2=\frac{ab}{cd}=\frac{ckdk}{cd}=k^2\)

có đpcm

Đặt \(\frac{a}{c}=\frac{b}{d}=k\)

\(\Rightarrow a=ck;b=dk\)

+)\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(ck\right)^2+\left(dk\right)^2}{c^2+d^2}=\frac{c^2.k^2+d^2.k^2}{c^2+d^2}=\frac{k^2.\left(c^2+d^2\right)}{c^2+d^2}=k^2\left(1\right)\)

+)\(\frac{ab}{cd}=\frac{ck.dk}{c.d}=\frac{c.d.k^2}{c.d}=k^2\left(2\right)\)

+)Từ (1) và (2)

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(=k^2\right)\)

Chúc bạn học tốt

6 tháng 8 2019

Ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left[a+b\right]^2}{\left[c+d\right]^2}=\left[\frac{a+b}{c+d}\right]^2(1)\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left[a-b\right]^2}{\left[c-d\right]^2}=\left[\frac{a-b}{c-d}\right]^2(2)\)

Từ 1 và 2 suy ra : \(\left[\frac{a+b}{c+d}\right]^2=\left[\frac{a-b}{c-d}\right]^2\)

Trường hợp 1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a}{2c}=\frac{a}{c}(3)\)

.\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-a+b}{c+d-c+d}=\frac{2b}{2d}=\frac{b}{d}(4)\)

Từ 3 và 4 suy ra \(\frac{a}{c}=\frac{b}{d}\)hay \(\frac{a}{b}=\frac{c}{d}\).

20 tháng 6 2017

Giải:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a, Ta có: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\) (1)

\(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{b^2}{d^2}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)

b, Ta có: \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2}{d^2}\) (1)

\(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{b^2}{d^2}\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

20 tháng 6 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\left(1\right)\)

a) Thay (1) vào đề:

\(VT=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)

\(VP=\dfrac{bkb}{dkd}=\dfrac{b^2}{d^2}\)

\(\Rightarrow VT=VP\)

\(\Leftrightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\rightarrowđpcm.\)

b) Thay (1) vào đề bài:

\(\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\dfrac{b^2}{d^2}\)

Theo câu a) \(\dfrac{ab}{cd}=\dfrac{b^2}{d^2}\)

\(\Rightarrow\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{ab}{cd}\rightarrowđpcm.\)

13 tháng 1 2018

Mình giải câu a còn các câu khác tương tự nha !

a, a/b=c/d

=> a/c=b/d

Đặt a/c=b/d=k

=> a=ck ; b=ck

=> a^2+c^2/b^2+d^2 = c^2k^2+c^2/d^2k^2+d^2 = c^2.(k^2+1)/d^2.(k^2+1) = c^2/d^2

Mà a/b=c/d => c^2/d^2 = a/b . c/d = ac/bd

=> a^2+c^2/b^2+d^2 = ac/bd

=> ĐPCM

Tk mk nha

13 tháng 1 2018

\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\)

\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)

Mà \(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

18 tháng 12 2019

Đặt \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=k\Rightarrow\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{k^2\left(c^2+d^2\right)}{c^2+d^2}=k^2\)(1)

và \(\frac{ab}{cd}=\frac{cdk^2}{cd}=k^2\)(2)

Từ (1) và (2) suy ra \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

4 tháng 10 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(1)

Lại có \(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\)(2)

Từ (1) (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

4 tháng 10 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)

Ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{k^2b^2+b^2}{k^2d^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(1)

            \(\frac{ab}{cd}=\frac{kb\cdot b}{kd\cdot d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2) => đpcm

30 tháng 9 2018

a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}.\) (*)

mà \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

Từ (*) => đpcm

30 tháng 9 2018

b) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(đpcm\right)\)