Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a, Ta có: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\) (1)
\(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{b^2}{d^2}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
b, Ta có: \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2}{d^2}\) (1)
\(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{b^2}{d^2}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\left(1\right)\)
a) Thay (1) vào đề:
\(VT=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)
\(VP=\dfrac{bkb}{dkd}=\dfrac{b^2}{d^2}\)
\(\Rightarrow VT=VP\)
\(\Leftrightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\rightarrowđpcm.\)
b) Thay (1) vào đề bài:
\(\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\dfrac{b^2}{d^2}\)
Theo câu a) \(\dfrac{ab}{cd}=\dfrac{b^2}{d^2}\)
\(\Rightarrow\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{ab}{cd}\rightarrowđpcm.\)
Mình giải câu a còn các câu khác tương tự nha !
a, a/b=c/d
=> a/c=b/d
Đặt a/c=b/d=k
=> a=ck ; b=ck
=> a^2+c^2/b^2+d^2 = c^2k^2+c^2/d^2k^2+d^2 = c^2.(k^2+1)/d^2.(k^2+1) = c^2/d^2
Mà a/b=c/d => c^2/d^2 = a/b . c/d = ac/bd
=> a^2+c^2/b^2+d^2 = ac/bd
=> ĐPCM
Tk mk nha
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}=\frac{a}{b}.\frac{c}{d}=\frac{ac}{bd}\)
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)
Mà \(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}.\) (*)
mà \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
Từ (*) => đpcm
b) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(đpcm\right)\)
#
a) => a/c=b/d
=>(a/c)^2 = (b/d)^2
= a^2 - b^2/ c^2-d^2 = ab/cd
điều PCM
Tử a/b=c/d suy ra : a/c=b/d = ab/cd (1) hoặc a^2/c^2=b^2/d^2
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
a^2/c^2=b^2/d^2 = a^2-b^2/c^2-d^2 (2)
Từ (1) và (2) ta suy ra : ab/cd = a^2-b^2/c^2-d^2
Hoặc
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.
a2
Bạn Trần Thùy Dung ơi làm sai ùi cách 1 làm sai ùi:
đây là phép cộng không phải phép nhân
Ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left[a+b\right]^2}{\left[c+d\right]^2}=\left[\frac{a+b}{c+d}\right]^2(1)\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left[a-b\right]^2}{\left[c-d\right]^2}=\left[\frac{a-b}{c-d}\right]^2(2)\)
Từ 1 và 2 suy ra : \(\left[\frac{a+b}{c+d}\right]^2=\left[\frac{a-b}{c-d}\right]^2\)
Trường hợp 1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a}{2c}=\frac{a}{c}(3)\)
.\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-a+b}{c+d-c+d}=\frac{2b}{2d}=\frac{b}{d}(4)\)
Từ 3 và 4 suy ra \(\frac{a}{c}=\frac{b}{d}\)hay \(\frac{a}{b}=\frac{c}{d}\).