Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=1-\frac{1}{2^2}-\frac{1}{3^2}-.........-\frac{1}{2020^2}\)
Ta có: \(2^2=2.2< 2.3\)\(\Rightarrow\frac{1}{2.2}>\frac{1}{2.3}\)\(\Rightarrow\frac{1}{2^2}>\frac{1}{2.3}\)
Tương tự, ta có: \(\frac{1}{3^2}>\frac{1}{3.4}\), ........... , \(\frac{1}{2020^2}>\frac{1}{2020.2021}\)
\(\Rightarrow A>1-\frac{1}{2.3}-\frac{1}{3.4}-...........-\frac{1}{2020.2021}\)
\(=1-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(\frac{1}{3}-\frac{1}{4}\right)-.......-\left(\frac{1}{2020}-\frac{1}{2021}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-..........-\frac{1}{2020}+\frac{1}{2021}\)
\(=1-\frac{1}{2}+\frac{1}{2021}\)\(=\frac{1}{2}+\frac{1}{2021}=\frac{2023}{4042}>\frac{1}{2020}\)
\(\Rightarrow A>\frac{1}{2020}\)
Ta có : M = \(\frac{x+y}{z}+\frac{x+z}{y}=\frac{y+z}{x}\)
\(\Rightarrow M+3=\left(\frac{x+y}{z}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{y+z}{x}+1\right)\)
\(\Rightarrow M+3=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}\)
\(\Rightarrow M+3=\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Rightarrow M+3=2020.\frac{1}{202}\)
=> M + 3 = 10
=> M = 7
Vậy M = 7
b) Ta có : \(A=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2017^2}\)
\(=\frac{2}{3.3}+\frac{2}{5.5}+\frac{2}{7.7}+...+\frac{2}{2017.2017}\)
\(< \frac{2}{\left(3+1\right)\left(3-1\right)}+\frac{2}{\left(5-1\right)\left(5+1\right)}+\frac{2}{\left(7-1\right)\left(7+1\right)}+...+\frac{2}{\left(2017-1\right)\left(2016-1\right)}\)
\(=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2016.2018}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2016}-\frac{1}{2018}\)
\(=\frac{1}{2}-\frac{1}{2018}\)
\(=\frac{1008}{2018}=\frac{504}{1009}\)
=> \(A< \frac{504}{1009}\left(\text{ĐPCM}\right)\)
Đặt \(K=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2020}\)
\(=1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{2020.2021}{2}}\)
\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2020.2021}\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2020}-\frac{1}{2021}\right)\)
\(=2\left(1-\frac{1}{2021}\right)=2.\frac{2020}{2021}=\frac{4040}{2021}\)
\(\Rightarrow D=\frac{2020}{\frac{4040}{2021}}=\frac{2021}{2}\)
Ta có:
\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(.............\)
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)
Khi đó:
\(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{100}}\)
\(>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+.......+\frac{1}{\sqrt{100}}\left(100sohang\right)\)
\(=10\)
Gọi biểu thức là A
3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2019}}\)
⇒ 3A-A=2A=\(1+\frac{1}{3}+...+\frac{1}{3^{2019}}\)-\(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2020}}\)
⇒ 2A=1-\(\frac{1}{3^{2020}}\)
⇒ A= \(\frac{1}{2}-\frac{1}{3^{2020}.2}\)
⇒ A< \(\frac{1}{2}\)