Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(5^{2014}+5^{2013}-5^{2012}=5^{2012}\left(5^2+5-1\right)=5^{2012}.29⋮29\left(đpcm\right)\)
b/ \(7^{500}+7^{499}-7^{498}=7^{498}\left(7^2+7-1\right)=7^{498}.55⋮11\left(đpcm\right)\)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
Ta có công thức : \(a^{2k+1}+b^{2k+1}⋮a+b\forall a;b\in Z;k\in N\)
Áp dụng ta đc :
a )\(2^{70}+3^{70}=\left(2^2\right)^{35}+\left(3^2\right)^{35}=4^{35}+9^{35}⋮4+9=13\) (đpcm)
b)\(3^{105}+4^{105}=\left(3^5\right)^{35}+\left(4^5\right)^{35}=243^{35}+1024^{35}⋮243+1024=1267=181.7⋮181\)(đpcm)
Ta có :
\(M=4+4^2+4^3+...+4^{2016}\)
+) Chứng minh \(M⋮5\)
\(M=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2015}+4^{2016}\right)\)
\(M=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{2015}\left(1+4\right)\)
\(M=4.5+4^3.5+...+4^{2015}.5\)
\(M=5\left(4+4^3+...+4^{2015}\right)⋮5\)
+) Chứng minh \(M⋮21\)
\(M=\left(4+4^2+4^3\right)+...+\left(4^{2014}+4^{2015}+4^{2016}\right)\)
\(M=4\left(1+4+16\right)+...+4^{2014}\left(1+4+16\right)\)
\(M=4.21+...+4^{2014}.21\)
\(M=21\left(4+...+4^{2014}\right)⋮21\)
Từ hai phần chứng minh ta suy ra \(M⋮105\) ( vì cùng chia hết cho \(5\) và \(21\) nên chia hết cho \(5.21=105\) )
Vậy \(M⋮105\)
Chúc bạn học tốt ~
Ta có 52014 - 52013 + 52012
= 52012.(52 - 5 + 1)
= 52012.21
= 52011.5.21
= 52011.105 \(⋮\)105
=> 52014 - 52013 + 52012 \(⋮\)105
Ta có :
52014 - 52013 + 52012
= 52012 . (52 - 51 + 1)
= 52012 . (25 - 5 + 1)
= 52012 . 21
= 52011 . 5 . 21
= 52011 . 105\(⋮\)105
=> 52014 - 52013 + 52012 \(⋮\)105 (đpcm)
~Study well~
#Zu