
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Gọi x là ƯC của 2.n+5 va 3.n +7
2.n+5 chia hết cho x=> 3{2n+5} chia hết cho x
3n+7 chia hết cho x => 2{3n+7} chia hết cho x
3{2n+5} - 2{3n+7chia hết cho x
6n+15 - 6n+14 chia hết cho x
=>1 chia hết cho x
Gọi ƯC(2n+5,3n+7)=d
Ta có: 2n+5 chia hết cho d=>3.(2n+5)=6n+15 chia hết cho d
3n+7 chia hết cho d=>2.(3n+7)=6n+14 chia hết cho d
=>6n+15-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯC(2n+5,3n+7)=1
=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau


Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn

a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha

gọi UCLN(2n+1;14n+5) là d
ta có :
2n+1 chia hết cho d => 7(2n+1) chia hết cho d => 14n+7 chia hết cho d
14n+5 chia hết cho d
=>(14n+7)-(14n+5) chia hết cho d
=>2 chia hết cho d
=>d thuộc U(2)={1;2}
mà d \(\ne\)2 vì 2n+1 là số lẻ ko chia hết cho 2
=>d=1
=>UCLN(2n+1;14n+5) là 1
=>ntcn
=>dpcm


Gọi UCLN(2n + 1 ; 6n + 5) = d
2n + 1 chia hết cho d => 6n + 3 chia hết cho 3
Mà UCLN(6n + 3; 6n + 5) = 1
Do đó 2n + 1 và 6n + 5 là 2 số nguyên tố cùng nhau

a) Gọi ƯC(n+5;n+6) = d
=> n+5 ⋮ d và n+6 ⋮ d
=> n+6 - (n+5) ⋮ d
=> n+6-n-5 ⋮ d
=> 1 ⋮ d
=> d thuộc Ư(1) = 1
=> d = 1
=> ƯC(n+5;n+6) = 1
=> n+5 và n+6 là 2 số nguyên tố cùng nhau ( đpcm )
b) Gợi ý : nhân 2 vào n+2 ta có 2n+4 rồi làm tương tự câu a)
Gọi d là ƯCLN của 2n + 5 và n + 2
Khi đó : 2n + 5 chia hết cho d , n + 2 chia hết cho d
=> 2n + 5 chia hết cho d , 2(n + 2) chia hết cho d
<=> 2n + 5 chia hết cho d , 2n + 4 chia hết cho d
=> 2n + 5 - (2n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n + 5 và n + 2 là hai số nguyên tố cùng nhau