\(CMR:2^{2^{-1}}\approx\sqrt{2}\)

( Chú ý :\(a^{-b}=\frac{1}{a...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2019

\(2^{2^{-1}}=\left(2^2\right)^{-1}=4^{-1}=\frac{1}{4}\)

Vì \(\frac{1}{4}\)là số hữu tỉ còn \(\sqrt{2}\)là số vô tỉ

\(\Rightarrow2^{2^{-1}}\ne\sqrt{2}\)

6 tháng 7 2019

Nhầm nhầm bài tui sai rồi 

25 tháng 10 2017

} \leq \sqrt{27}.\frac{(\frac{x}{3}+\frac{x}{3}+\dfrac{x}{3}+2r-x)^{2}}{16}= = \sqrt{27}.\frac{r^2}{4}$  chinh latex

12 tháng 12 2016

1)Đặt \(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)

\(A>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)(có 100 phân số)

\(A>\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)

\(A>\frac{100}{10}=10\left(đpcm\right)\)

2)\(A=\frac{\sqrt{x}-2010}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2011}{\sqrt{x+1}}=1-\frac{2011}{\sqrt{x}+1}\)

Để A đạt giá trị nhỏ nhất thì

\(1-\frac{2011}{\sqrt{x}+1}\) đạt GTNN

\(\Leftrightarrow\frac{2011}{\sqrt{x}+1}\) đạt GTLN

\(\Leftrightarrow\sqrt{x}+1\) đạt GTNN

\(\Leftrightarrow\sqrt{x}\) đạt GTNN

\(\Leftrightarrow x=0\)

\(\Rightarrow MIN_A=\frac{-2010}{1}=-2010\)

12 tháng 12 2016

GIÚP MIK VS MN ƠIkhocroi

13 tháng 2 2018

a) Ta có \(\sqrt{17}\)>\(\sqrt{16}\)

             \(\sqrt{26}\)>\(\sqrt{25}\)

=>\(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{16}\)+\(\sqrt{25}\)+1

=>\(\sqrt{17}\)+\(\sqrt{26}\)+1> 4+ 5 +1

=>\(\sqrt{17}\)+\(\sqrt{26}\)+1 >10 hay >\(\sqrt{100}\)

=>\(\sqrt{17}\)+\(\sqrt{26}\)+1>\(\sqrt{99}\)

b) \(\frac{1}{\sqrt{1}}\)=1 >\(\frac{1}{10}\)

    \(\frac{1}{\sqrt{2}}\)>\(\frac{1}{\sqrt{100}}\)=\(\frac{1}{10}\)

....................................

   \(\frac{1}{\sqrt{100}}\)=\(\frac{1}{10}\)

=>\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)>\(\frac{1}{10}\)+\(\frac{1}{10}\)+...+\(\frac{1}{10}\)(có 100 số \(\frac{1}{10}\))

=>\(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+\(\frac{1}{\sqrt{3}}\)+...+\(\frac{1}{\sqrt{100}}\)\(\frac{100}{10}\)=10 

3 tháng 4 2018

\(a)\) Ta có : 

\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)

Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

Chúc bạn học tốt ~ 

21 tháng 7 2016

Câu a)
\(A=\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}\)
\(=\sqrt{1\left(20+1\right)}+\sqrt{2\left(20+1\right)}+\sqrt{3\left(20+1\right)}\)
\(=\sqrt{20+1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)

\(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}\)
\(=1\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{1}\cdot\sqrt{20}+\sqrt{2}\cdot\sqrt{20}+\sqrt{3}\cdot\sqrt{20}\right)\)
\(=\sqrt{1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\sqrt{20}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
\(=\left(\sqrt{20}+\sqrt{1}\right)\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)

Ta thấy: \(\hept{\begin{cases}\left(\sqrt{20+1}\right)^2=20+1\\\left(\sqrt{20}+\sqrt{1}\right)^2=20+1+2\sqrt{20}\end{cases}}\)
\(\Rightarrow\left(\sqrt{20+1}\right)^2< \left(\sqrt{20}+\sqrt{1}\right)^2\Rightarrow\sqrt{20+1}< \sqrt{20}+\sqrt{1}\)
Vậy A < B.

21 tháng 7 2016

a) A<B

23 tháng 7 2016

không biết làm

1 tháng 3 2020

a)Ta có:\(\sqrt{17}>\sqrt{16}\)

             \(\sqrt{26}>\sqrt{25}\)

\(\implies\) \(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}\)

\(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)

Mà \(\sqrt{100}=10\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{100}\)

Mà \(\sqrt{100}>\sqrt{99}\) \(\implies\) \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)

b)Ta có:\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=100.\frac{1}{\sqrt{100}}\)

\(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>\frac{1}{10}.100=10\)

\(\implies\) \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{100}}>10\left(đpcm\right)\)

26 tháng 4 2018

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+....+\left(\frac{1}{2}\right)^{99}\)

\(\Rightarrow2B=1+\frac{1}{2}+...+\left(\frac{1}{2^{98}}\right)\)

\(\Rightarrow B=\frac{1}{2}-\frac{1}{2^{99}}>-\frac{1}{2}>A\)

\(\Rightarrow B>A\)

2 tháng 5 2019

thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}???\)

2 tháng 5 2019

viết nốt đề bài : thì 1/a^2 + 1/b^2 + 1/c^2 = 2

Từ 1/a + 1/b + 1/c = 2 bình phương hai vế ta có: 
. . . (1/a + 1/b + 1/c)² = 2² 
=> 1/a² + 1/b² + 1/c² + 2(1/ab + 1/bc + 1/ ca) = 4 
=> 1/a² + 1/b² + 1/c² + 2(a + b + c)/abc = 4 (Quy đồng MTC= abc) 
=> 1/a² + 1/b² + 1/c² + 2abc/abc = 4 (Vì a + b + c = abc) 
=> 1/a² + 1/b² + 1/c² + 2 = 4 
=> 1/a² + 1/b² + 1/c² = 2 (Đpcm)