Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nó có thể = nhau nếu m viết đúng đề nhưng xin lỗi nhé :) sai đề rồi
Đặt 2011 = a ; 11 = b ; 2000 = c
\(\Rightarrow a=b+c\)
Xét vế phải của đẳng thức ta có: \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{a^3+b^3}{a^3+c^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}\)
Thay \(a=b+c\)vào \(a^2-ab+b^2=\left(b+c\right)^2-\left(b+c\right).b+b^2=b^2+bc+c^2\)
Thay \(a=b+c\)vào \(a^2-ac+c^2=\left(b+c\right)^2-\left(b+c\right).c+c^2=b^2+bc+c^2\)
\(\Rightarrow\)\(a^2-ab+b^2=a^2-ac+c^2\)
\(\Rightarrow\) \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{a^3+b^3}{a^3+c^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)}=\frac{a+b}{a+c}=\frac{2011+11}{2011+2000}\)
Vậy \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{2011+11}{2011+2000}\left(đpcm\right)\)
Bài 2:
\(A=\dfrac{x\left(x^3+1\right)}{x^2-x+1}-\dfrac{x\left(x^3-1\right)}{x^2+x+1}\)
\(=x\left(x+1\right)-x\left(x-1\right)\)
=x^2+x-x^2+x
=2x
\(3,\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left[\left(\frac{1}{x}\right)^2-2.\frac{1}{x}.\frac{1}{y}+\left(\frac{1}{y}\right)^2\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left[\frac{1}{x^2}-\frac{2}{xy}+\frac{1}{y^2}\right]-\frac{x^2+y^2}{x^2-2xy+y^2}\)
\(=\frac{2}{xy}:\left[\frac{y^2-2.xy+x^2}{x^2y^2}\right]-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}.\frac{x^2y^2}{x^2-2xy+y^2}-\frac{x^2+y^2}{x^2-2xy+y^2}\)
\(=\frac{2xy}{x^2-2xy+y^2}+\frac{-x^2-y^2}{x^2-2xy-y^2}\)
\(=\frac{2xy-x^2-y^2}{x^2-2xy+y^2}=\frac{-\left(x^2-2xy+y^2\right)}{x^2-2xy+y^2}=-1\)
\(\frac{2011^3+11^3}{2011^3+2000^3}\)
\(=\frac{\left(2011+11\right)\left(2011^2-2011.11+11^2\right)}{\left(2011+2000\right)\left(2011^2-2011.2000+2000^2\right)}\)
\(=\frac{\left(2011+11\right)\left[2011^2-11\left(2011-11\right)\right]}{\left(2011+2000\right)\left[2011^2-2000\left(2011-2000\right)\right]}\)
\(=\frac{\left(2011+11\right)\left(2011^2-11.2000\right)}{\left(2011+2000\right)\left(2011^2-2000.11\right)}\)
\(=\frac{2011+11}{2011+2000}\left(2011^2-11.2000\ne0\right)\)
đpcm