Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì số có chữ số tận cùng là 0 thì sẽ chia hết cho 2 và 5
vậy ta xét chữ số tận cùng của phép tính 20112012 - 20132012
20112012 có chữ số tận cùng là: 12012 = 14.503 = ( ....1)
20132012 có chữ số tận cùng là : 32012 = 34.503 = (....1)
20112012 - 20132012 = (....1) - (.....1) = (.....0)
vì kết quả của phép tính trên có chữ số tận cùng là 0 nên:
20112012 - 20132012 chia hết cho 2 và 5
a, Ta có : \(7x+4y⋮37\)
\(\Rightarrow23\left(7x+4y\right)⋮37\)
\(\Rightarrow161x+92y⋮37\)
\(\Rightarrow\left(13x+18y\right)+148x+74y⋮37\)
Mà \(\hept{\begin{cases}148x⋮37\\74x⋮37\end{cases}\Rightarrow13x+18y⋮37}\)
Vậy \(13x+18y⋮37\)
b, Ta có : \(A=\frac{2014^{2012}+1}{2014^{2013}+1}\)
\(\Rightarrow2014A=\frac{2014^{2013}+2014}{2014^{2013}+1}=\frac{2014^{2013}+1+2013}{2014^{2013}+1}=1+\frac{2013}{2014^{2013}+1}\)
Ta có : \(B=\frac{2014^{2011}+1}{2014^{2012}+1}\)
\(\Rightarrow2014B=\frac{2014^{2012}+2014}{2014^{2012}+1}=\frac{2014^{2012}+1+2013}{2014^{2012}+1}=1+\frac{2013}{2014^{2012}+1}\)
Vì \(2014^{2013}+1>2014^{2012}+1\)
\(\Rightarrow\frac{1}{2014^{2013}+1}< \frac{1}{2014^{2012}+1}\Rightarrow1+\frac{1}{2014^{2013}+1}< 1+\frac{1}{2014^{2012}+1}\)
\(\Rightarrow2014A< 2014B\Rightarrow A< B\)
Cậu bùi danh nghệ gì đó ơi đây là toán nâng cao chứ ko phải toán lớp 7,8 như cậu nói đâu
a) A có 3 chữ số tận cùng là 008 nên chia hết cho 8 (1)
A có tổng các chữ số là 9 nên chia hết cho 3 (2)
Từ (1) và (2) kết hợp với (3,8) = 1 => A chia hết cho 24
b) A có chữ số tận cùng là 8 nên không là số chính phương
a) 5^2013 + 5^2012 + 5^2011
= 5^2011 . ( 1 + 5 +5^2)
= 5^2011. 31
31 chia hết cho 31 nên số nào nhân với 31 đều chia hết cho 31
Vậy 5^2013 +5^2012 + 5^2011 chia hết cho 31
2011^2012 - 2013^2012
= (...1)^2012 - (...3)^2012
= (....1) - (....1)
= (....0) chia hết cho 10 nên chia hết cho 2 và 5 do (2;5)=1