\(\in\) N)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2015

A = 10n +18n -1 = (10n-1)+18n = 999...9 +18n      (n chữ số 9)

                                                  = 9(1111...111 +2n)chia hết cho 9       (n chữ số 1) 

 Đặt B = 111...111+2n = 111...111 - n +3n

Tổng các chữ số của 111...111 là n

=> B=111...111 - n +3n chia hết cho 3

=> A chia hết cho 3

Vì (3,9)=1 => A chia hết cho 27

1 tháng 3 2018

mình ghi lại đề nhé

Chứng tỏ rằng :

a, 1028 + 8  chia hết cho 72

b, 8+ 220 chia hết cho 17

c, 10n + 18n - 1 chia hết cho 27

d, 10n +72n - 1 chia hết cho 81

1 tháng 3 2018

a) 1028 = (2.5)28 = 228.528 => 1028 chia hết cho 23 hay 1028 chia hết cho 8 => 1028 + 8 chia hết cho 8

Mà 1028 + 8 = 1000...08 có tổng các chữ số bằng 9 => 1028 + 8 chia hết cho 9 

=> 1028 + 8 chia hết cho 8.9 = 72

b) 8+ 220 = (23)+ 220 = 224 + 220 = 220.(2+ 1) = 220.17 chia hết cho 17 => 8+ 220 chia hết cho 17

c) 10+ 18n - 1 = (10- 1) - 9n + 27n = 999...9 - 9n + 27n (Có n chữ số 9)

= 9.111...1 - 9n + 27n   (Có n chữ số 1)

= 9.(111...1 - n) + 27n

Nhận xét: 111...1 có tổng các chữ số là 1+ 1 + 1+ ..+ 1 = n => 111...1 - n chia hết cho 3

=> 9.(111...1 - n) chia hết cho 9.3 = 27

Mà 27n chia hết cho 27

Nên 9.(111...1 - n) + 27n chia hết cho 27

Vậy....

d) 10+ 72n - 1 = (10- 1) - 9n + 81n = 99...9 - 9n + 81n  (Có n chữ số 9)

= 9.(11..1 - n) + 81n

Nhận  xét: 111...1 có tổng các chữ số là n => 111...1 - n chia hết cho 9 

=> 9.(11...1 - n) chia hết cho 9.9 = 81

Mà 81n chia hết cho 81

Nên 9.(11..1 - n) + 81n chia hết cho 81

Vậy...

9 tháng 12 2015

bài này áp dụng phương pháp quy nạp 2 lần. 
................................. 
chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng) 
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27. 
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27. 
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1 
= (10^k+18k-1)+9*10^k+18 
= (10^k+18k-1)+9(10^k+2) 
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27. 

Chứng minh 9(10^k+2) chia hết cho 27. 
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng) 
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27. 
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27. 
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2) 
= 9(10^m+2) +81*10^m 
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27 
=>9(10^k+2) chia hết cho 27 
=>10^(k+1)+18(k+1)-1 chia hết cho 27 
=>10^n+18n-1 chia hết cho 27=> đpcm

22 tháng 9 2015

a) 10n + 18n - 1 = (10- 1) + 18n = 99...9 + 27n - 9n  ( Số 99...9 có n chữ số 9) 

= (99...9 - 9n) + 27n = 9.(11...1 - n) + 27n  ( có n chữ số 1)

Nhận xét: Số 11...1 có tổng các chữ số bằng 1 + 1...+ 1 = n 

Mà ta có: Số tự nhiên và tổng các chữ số của nó có cùng số dư khi chia cho 3 => 11...1 và n có cùng số dư khi chia cho 3

=> 11...1 - n chia hết cho 3 => 9.(11...1 - n) chia hết cho 9.3 = 27

Ta có: 27n chia hết cho 27 nên 9.(11...1 - n) + 27n  ( có n chữ số 1) chia hết cho 27 

Vậy 10+ 18n - 1 chia hết cho 27

b) Tương tự câu a)

2 tháng 5 2018

Giả sử: 10 ^ n + 18n - 1 chia hết cho 27

=> 10^n - 1 + 18n chia hết cho 27

=> 999..9 (n chữ số 9) + 18n chia hết cho 27

=> 9(1111...1+2n) chia hết cho 27

=> 111..1 + 2n chia hết cho 3

Ta có: Tổng các chữ số của 1111..11 (n số 1) bằng n và 2n có tổng các chữ số là số dư khi 2n chia 9

Gọi số dư đó là k thì 2n = 3x + 2k (x thuộc N)

111....1 = 3y + k (x thuộc n)

=> 2n + 1111...11 = 3(x+y) + 3k = 3(x+y+k)

=> 2n + 111...111 chia hết cho 3

=> 10n + 18n - 9 chia hết cho 27

21 tháng 11 2015

1033  + 8 có tận cùng là 8 => 1033 + 8 chia hết cho 2

1033 + 8  có tổng các chữ số là 9 => 1033 + 8 chia hết cho 9

1010  + 14 có tận cùng là 4 => 1010 + 14 chia hết cho 2

1010 + 14  có tổng các chữ số là 15 => 1010 + 14 chia hết cho 3