\(x=\sqrt[3]{3+\sqrt{9+\dfrac{125}{7}}}-\sqrt[3]{-3+\sqrt{9+\dfrac{125}{7}}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

Đề sai sửa lại là:

\(x=\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\dfrac{125}{27}}}\)

\(\Leftrightarrow x=\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}+\sqrt[3]{3-\sqrt{9+\dfrac{125}{27}}}\)

\(\Leftrightarrow x^3=3+\sqrt{9+\dfrac{125}{27}}+3-\sqrt{9+\dfrac{125}{27}}+3.\left(\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}+\sqrt[3]{3-\sqrt{9+\dfrac{125}{27}}}\right)\left(\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}.\sqrt[3]{3-\sqrt{9+\dfrac{125}{27}}}\right)\)

\(\Leftrightarrow x^3=6+3x.\left(\dfrac{-5}{3}\right)\)

\(\Leftrightarrow x^3+5x-6=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow x=1\)

Vậy x là số nguyên

13 tháng 9 2017

đề sai à??

a: \(A^3=2+\sqrt{5}+2-\sqrt{5}+3\cdot A\cdot\sqrt[3]{4-5}\)

\(\Leftrightarrow A^3=4-3A\)

=>A=1

c: \(C=1+\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(=1+3=4\)

20 tháng 8 2017

a) \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)

=\(\sqrt[3]{16+8\sqrt{5}}+\sqrt[3]{16-8\sqrt{5}}\)

=\(\sqrt[3]{\left(1+\sqrt{5}\right)^3}+\sqrt[3]{\left(1-\sqrt{5}\right)^3}\)

=\(1+\sqrt{5}+1-\sqrt{5}=2\)

b) \(\left(2-\sqrt{3}\right)\sqrt[3]{26+15\sqrt{3}}\)

=\(\left(2-\sqrt{3}\right)\sqrt[3]{\left(2+\sqrt{3}\right)^3}\)

=\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)

c) xem lại đề

3 tháng 1 2018

Bạn Thái làm sai rồi

a)do ban đầu cậu nhân 2 cho hai vế nhưng bạn chưa chia lại.mik bổ sung ý tiếp cho bạn là

2A=2=>A=1.

mik lam tiep cau b la

B=\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)\)

=4-3

=1.

còn câu c mik pó tay :))

15 tháng 9 2023

Có vẻ như là đề hơi sai á bạn. Bạn xem lại đề nha.

NV
16 tháng 5 2019

Đề bài sai, casio cho kết quả ko phải một số nguyên, đề bài đúng phải là \(\frac{125}{27}\)

\(x=\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)

\(\Rightarrow x^3=6-3\sqrt[3]{\frac{125}{27}}\left(\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\right)\)

\(\Rightarrow x^3=6-5x\)

\(\Leftrightarrow x^3+5x-6=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+6\right)=0\Rightarrow x=1\)

Vậy \(x\in Z\)

10 tháng 8 2017

\(A=\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\dfrac{125}{27}}}\)

\(\Leftrightarrow A=\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}+\sqrt[3]{3-\sqrt{9+\dfrac{125}{27}}}\)

\(\Leftrightarrow A^3=6+3A.\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}.\sqrt[3]{3-\sqrt{9+\dfrac{125}{27}}}\)

\(\Leftrightarrow A^3=6+3A.\left(-\dfrac{5}{3}\right)\)

\(\Leftrightarrow A^3+5A-6=0\)

\(\Leftrightarrow\left(A-1\right)\left(A^2+A+6\right)=0\)

\(\Leftrightarrow A=1\)

10 tháng 8 2017

chưa hiểu chỗ\(A^3\)