K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

a) \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)

=\(\sqrt[3]{16+8\sqrt{5}}+\sqrt[3]{16-8\sqrt{5}}\)

=\(\sqrt[3]{\left(1+\sqrt{5}\right)^3}+\sqrt[3]{\left(1-\sqrt{5}\right)^3}\)

=\(1+\sqrt{5}+1-\sqrt{5}=2\)

b) \(\left(2-\sqrt{3}\right)\sqrt[3]{26+15\sqrt{3}}\)

=\(\left(2-\sqrt{3}\right)\sqrt[3]{\left(2+\sqrt{3}\right)^3}\)

=\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)

c) xem lại đề

3 tháng 1 2018

Bạn Thái làm sai rồi

a)do ban đầu cậu nhân 2 cho hai vế nhưng bạn chưa chia lại.mik bổ sung ý tiếp cho bạn là

2A=2=>A=1.

mik lam tiep cau b la

B=\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)\)

=4-3

=1.

còn câu c mik pó tay :))

24 tháng 11 2021

\(a,=6\sqrt{2}-3-6\sqrt{2}=-3\\ b,=12\sqrt{3}-2\sqrt{5}-6\sqrt{3}+5\sqrt{5}=6\sqrt{3}+3\sqrt{5}\\ c,=\sqrt{3}-1-\sqrt{3}=-1\\ d,=\sqrt{6}-\dfrac{5\left(\sqrt{6}+1\right)}{5}=\sqrt{6}-\sqrt{6}-1=-1\)

16 tháng 10 2021

a: Ta có: \(A=\sqrt{8}-2\sqrt{18}+3\sqrt{50}\)

\(=2\sqrt{2}-6\sqrt{2}+15\sqrt{2}\)

\(=11\sqrt{2}\)

b: Ta có: \(B=\sqrt{125}-10\sqrt{\dfrac{1}{20}}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)

\(=5\sqrt{5}-\sqrt{5}+\sqrt{5}-1\)

\(=5\sqrt{5}-1\)

a: \(A^3=2+\sqrt{5}+2-\sqrt{5}+3\cdot A\cdot\sqrt[3]{4-5}\)

\(\Leftrightarrow A^3=4-3A\)

=>A=1

c: \(C=1+\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(=1+3=4\)

30 tháng 6 2021

a) \(\text{2}\sqrt{\text{18}}-9\sqrt{50}+3\sqrt{8}\)

\(\text{6}\sqrt{\text{2}}-45\sqrt{2}+6\sqrt{2}\)

\(-33\sqrt{2}\)

30 tháng 6 2021

b) = \(7-2.\sqrt{7}.\sqrt{3}+3+7.2\sqrt{21}\)

\(10-2\sqrt{21}+14\sqrt{21}\)

\(10+12\sqrt{21}\)

bài 1: 

a: Ta có: \(2\sqrt{18}-9\sqrt{50}+3\sqrt{8}\)

\(=6\sqrt{2}-45\sqrt{2}+6\sqrt{2}\)

\(=-33\sqrt{2}\)

b: Ta có: \(\left(\sqrt{7}-\sqrt{3}\right)^2+7\sqrt{84}\)

\(=10-2\sqrt{21}+14\sqrt{21}\)

\(=12\sqrt{21}+10\)

Bài 2: 

a: Ta có: \(\sqrt{\left(2x+3\right)^2}=8\)

\(\Leftrightarrow\left|2x+3\right|=8\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=8\\2x+3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{11}{2}\end{matrix}\right.\)

b: Ta có: \(\sqrt{9x}-7\sqrt{x}=8-6\sqrt{x}\)

\(\Leftrightarrow4\sqrt{x}=8\)

hay x=4

c: Ta có: \(\sqrt{9x-9}+1=13\)

\(\Leftrightarrow3\sqrt{x-1}=12\)

\(\Leftrightarrow x-1=16\)

hay x=17

a: =(2căn 3-8căn 3)(căn 3-1)

=-6căn 3*(căn 3-1)

=-18+6căn 3

b: \(=\dfrac{6-2\sqrt{5}}{\sqrt{5}-3}-\sqrt{5}+2\)

=-2-căn 5+2=-căn 5

c: \(=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-\dfrac{1}{4}\cdot8\sqrt{2a}\)

=\(3\sqrt{2a}-3a\cdot\sqrt{2a}\)

a) Ta có: \(A=\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+\sqrt{3}\right)\)

\(=\sqrt{3}+2+\sqrt{2}+1-\sqrt{2}-\sqrt{3}\)

=3

b) Ta có: \(B=\left(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)

\(=\left[\sqrt{3}+1-3\left(2+\sqrt{3}\right)+\dfrac{15\left(3+\sqrt{3}\right)}{6}\right]\cdot\dfrac{1}{5+\sqrt{3}}\)

\(=\left(\sqrt{3}+1-6-3\sqrt{3}+\dfrac{5}{2}\left(3+\sqrt{3}\right)\right)\cdot\dfrac{1}{5+\sqrt{3}}\)

\(=\left(-5-2\sqrt{3}+\dfrac{15}{2}+\dfrac{5}{2}\sqrt{3}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)

\(=\left(\dfrac{5}{2}+\dfrac{\sqrt{3}}{2}\right)\cdot\dfrac{1}{5+\sqrt{3}}=\dfrac{1}{2}\)

 

AH
Akai Haruma
Giáo viên
18 tháng 9 2023

Lời giải:
a.

\(=\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}+\frac{4(\sqrt{5}-1)}{(\sqrt{5}-1)(\sqrt{5}+1)}=\frac{\sqrt{5}+2}{5-2^2}+\frac{4(\sqrt{5}-1)}{5-1}\)

$=\sqrt{5}+2+(\sqrt{5}-1)=2\sqrt{5}+1$
b.

$=\frac{4(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}+\frac{7(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}-2\sqrt{3}$

$=\frac{4(\sqrt{3}+1)}{2}+\frac{7(3+\sqrt{2})}{1}-2\sqrt{3}$
$=2(\sqrt{3}+1)+7(3+\sqrt{2})-2\sqrt{3}$
$=23+7\sqrt{2}$
c.

$=(\frac{4(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})}-\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}).\frac{7(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}$

$=[(3+\sqrt{5})-(\sqrt{5}+2)].(3+\sqrt{2})$

$=1(3+\sqrt{2})=3+\sqrt{2}$

a: \(=\dfrac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}-3\sqrt{3}+\dfrac{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}\)

\(=\sqrt{3}-3\sqrt{3}+\sqrt{3}=-\sqrt{3}\)

b: \(=\left(\left(2-2\sqrt{5}\right)\left(\sqrt{5}+2\right)+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(2\sqrt{5}+4-10-4\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(-2\sqrt{5}+\sqrt{3}-6\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=-20+2\sqrt{15}+\sqrt{15}-3-6\sqrt{5}+6\sqrt{3}\)

\(=-23+3\sqrt{15}-6\sqrt{5}+6\sqrt{3}\)