\(x^4-4x+5>0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

\(x^4-4x+5=x^4-4x^2+4+1+4x+4x^2.\)

\(=\left(x^2-2\right)^2+1+4x+4x^2\)

=\(\left(x^2-2\right)^2+\left(2x\right)^2+2.2x+1\)

=\(\left(x^2-2\right)^2+\left(2x+1\right)^2\ge0.\)

p/s đề sai

22 tháng 9 2020

Ta có x2 - 2x + 5

= (x2 - 2x + 4) + 1 

= (x - 2)2 + 1 \(\ge\)1 > 0 (đpcm)

b) Ta có : 4x2 + 4x - 3 = (4x2 + 4x + 1) - 4 = (2x + 1)2 - 4 \(\ge\) - 4 (đpcm)

22 tháng 9 2020

+) Ta có: \(x^2-2x+5=\left(x^2-2x+1\right)+4\)

                                         \(=\left(x-1\right)^2+4\)

    Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-1\right)^2+4\ge4>0\forall x\)

 Vậy \(x^2-2x+5>0\)

25 tháng 10 2016

\(x^2+4x+5\)=\(x^2+2.x.2+2^2+1\)

=\(\left(x+2\right)^2+1\)

Vì \(\left(x+2^2\right)\ge0\)

=>\(\left(x+2^2+1\ge1\right)\)

=> \(x^2+4x+5>0\)

25 tháng 10 2016

ai học giỏi trả lời giùm mink vs!

12 tháng 8 2018

a)  Áp dụng AM-GM ta có:

\(2x+\frac{6}{x}\ge2\sqrt{2x.\frac{6}{x}}=2\sqrt{12}=4\sqrt{3}\)

Dấu "=" xảy ra  <=> \(x=\sqrt{3}\)

b)   \(\frac{4x^2-2x+25}{x}\ge18\)

<=>  \(4x^2-2x+25\ge18x\)

<=>  \(4x^2-20x+25\ge0\)

<=>  \(\left(2x-5\right)^2\ge0\)  luôn đúng

Dấu "=" xảy ra  <=>  \(x=2,5\)

12 tháng 8 2018

a) Vì x > 0

Nên áp dụng BĐT Cô-si ta có: \(2x+\frac{6}{x}\ge2\sqrt{2x.\frac{6}{x}}=2\sqrt{12}=4\sqrt{3}\)

Vậy => ĐPCM

b) Ta có: \(\frac{4x^2-2x+25}{x}=\frac{\left(2x\right)^2-2.2x.\frac{1}{2}+\frac{1}{4}+\frac{99}{4}}{x}=\frac{\left(2x-\frac{1}{2}\right)^2+\frac{99}{4}}{x}\)

P/s: phân tích tới đây thôi, mình chưa nghĩ ra

2 tháng 11 2019

Một cửa hàng ngày đầu bán được 3 tạ 16 kg gạo, ngày sau bán được hơn ngày đầu 3,5 yến. Hỏi cả hai ngày bán đươc bao nhiêu tạ gạo ?

2 tháng 11 2019

các bạn giải giúp mình với trong vòng từ 5h đến 6h nhé

28 tháng 2 2018

\(x^4-4x+5=x^4-2x^2+1+2x^2-4x+2+2\)

\(=\left(x^2-1\right)^2+2\left(x-1\right)^2+2\)

\(\left\{{}\begin{matrix}\left(x^2-1\right)^2\ge0\forall x\\2\left(x-1\right)^2\ge0\forall x\end{matrix}\right.\) nên \(\left(x^2-1\right)^2+2\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x^2-1\right)^2+2\left(x-1\right)^2+2\ge2>0\forall x\)

Hay \(x^4-4x+5>0\forall x\)(đpcm)

20 tháng 6 2019

b) Ta có: \(a^2+a+1=a^2+2.\frac{1}{2}a+\frac{1}{4}+\frac{3}{4}\)

\(=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall a\)

Vậy \(a^2+a+1>0\left(đpcm\right)\)

20 tháng 6 2019

\(a,\left(x-3\right)\left(x-5\right)+4=x^2-8x+15+4=\left(x-4\right)^2+3>0\)

\(b,a^2+a+1=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(c,a^2-a+1=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

23 tháng 7 2017

a. \(x^2+3x+5\)

\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

=> đpcm

23 tháng 7 2017

b. \(4x^2+5x+7\)

\(=\left(2x\right)^2-2.2x.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{87}{16}\)

= \(\left(2x+\dfrac{5}{4}\right)^2\) + \(\dfrac{87}{16}\) \(\ge\dfrac{87}{16}\)

=> đpcm

1 tháng 3 2018

có : \(x\ge0\)

\(\Rightarrow x^3+4x\ge0\)

\(\Rightarrow\)\(x^3+4x+1\ge1\)

có  \(3x^2\ge0\) ( vì x >=0)

suy ra

\(x^3+4x+1\ge3x^2\)