Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có x2 + y2 - 4x - 2y +5 = ( x2 - 4x + 4) + ( y2 - 2y + 1) = (x-2)2 + (y-1)2
Vì (x-2)2 >= 0 với mọi x, (y-1)2 >=0 với mọi y
=> (x-2) + (y-1) >=0 với mọi x,y hay x2 + y2 - 4x - 2y +5 >=0 (đpcm)
\(x^2+y^2-4x-2y+5=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)\)
\(=\left(x-2\right)^2+\left(y-1\right)^2\ge0\)
Bài làm:
a) Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\left(\forall x\right)\)
=> đpcm
b) \(x^4+3x^2+3=\left(x^4+3x^2+\frac{9}{4}\right)+\frac{3}{4}=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)
=> đpcm
a) -x2 + 4x - 5 = -x2 + 4x - 4 - 1
= -( x2 - 4x + 4 ) - 1
= -( x - 2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
b) x4 + 3x2 + 3 ( * )
Đặt t = x2
(*) <=> t2 + 3t + 3
<=> ( t2 + 3t + 9/4 ) + 3/4
<=> ( t + 3/2 )2 + 3/4
<=> ( x2 + 3/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )
a ) \(4x^2+2x+1=\left(2x\right)^2+2\cdot2x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
b ) \(x^2+3x+4=\left(x^2+2\cdot\frac{3}{2}\cdot x+\frac{9}{4}\right)+\frac{7}{4}=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)
c ) \(9x^2+3x+5=\left(3x\right)^2+2\cdot3x\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}=\left(3x+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall x\)
Ta có : 4x2 + 2x + 1
= (2x)2 + 2.2x.\(\frac{1}{2}\) + \(\frac{1}{2}+\frac{3}{4}\)
= (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)
Mà : (2x + \(\frac{1}{2}\))2 \(\ge0\forall x\)
=> (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)
Hay : (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(>0\forall x\)
Vậy 4x2 + 2x + 1 \(>0\forall x\)
a,( x^2-6x+9)+1
=(x-3)^2+1
tự làm tiếp nhé bạn
b, -x^2-4x-4-1
=-(x^2+4x+4)-1
=-(x+2)^2-1
ta thấy -(x+2)^2<0
tự làm tiếp nhé bạn mình chỉ gợi ý thôi
Làm mỗi ý đầu !! Mấy ý kia tự làm nha !
1) Biến đổi vế trái , ta có :
\(x^2+xy+y^2+1\)
\(\Leftrightarrow x^2+xy+\frac{1}{4}y^2+\frac{3}{4}y^2+1\)
\(\Leftrightarrow\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\left(đpcm\right)\)
x2 + xy + y2 + 1
\(=\left[x^2+2\cdot x\cdot\frac{y}{2}+\left(\frac{y}{2}\right)^2\right]+\frac{3y^2}{4}+1\)
\(=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge1>0\forall x,y\left(đpcm\right)\)
\(4x-x^2\)
\(=-\left(x^2-4x+4\right)+4\)
\(=-\left(x-2\right)^2+4\le4\forall x\)
\(-x^2+4x-10\)
\(=-\left(x^2-4x+4\right)-6\)
\(=-\left(x-2\right)^2-6\le-6< 0\forall x\left(đpcm\right)\)
1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)
3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0
4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)
5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)
1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)
=> Đpcm
2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)
=> Đpcm
3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)
\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)
\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)
=> Đpcm
4,5 làm tương tự
a , Ta có \(x^2+x+1=x^2+2x\frac{1}{2}+\left(\frac{1}{2}\right)^2+\)\(\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\) \(\ge\frac{3}{4}>0\left(đpcm\right)\)
b , Ta có : \(4x^2-2x+3\)= \(\left(2x\right)^2-2.2x.1+1^2+2\) = \(\left(2x-1\right)^2+2\ge2>0\left(đpcm\right)\)
c , Ta có \(3x^2+2x+1=x^2-\frac{2x}{3}+\frac{1}{9}+2x^2+\frac{8x}{3}+\frac{8}{9}\)
= \(\left(x-\frac{1}{3}\right)^2+2\left(x^2+\frac{4x}{3}+\frac{4}{9}\right)=\left(x-\frac{1}{3}\right)^2+2\left(x+\frac{2}{3}\right)^2\ge0\)
Vì Dấu "=" không thể xảy ra , do đó \(3x^2+2x+1>0\left(đpcm\right)\)
a) \(-2x^2+2x+1>0\)
\(-\left(2x^2-2x-1\right)>0\)
nhân 2 vế với (-1)=> đổi dấu sao sánh
\(\Leftrightarrow2x^2-2x-1< 0\)
\(\Leftrightarrow x^2-x-\frac{1}{2}< 0\)
\(\Leftrightarrow x^2-2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2-\frac{1}{4}-\frac{1}{2}< 0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\)
ta có \(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi \(x\)
=> \(\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\)(đpcm)
b) \(9x^2-6x+2>0\)
<=> \(\left(3x\right)^2-2.3.x+1-1+2>0\)
<=>\(\left(3x-1\right)^2+1>0\)(1)
vì \(\left(3x-1\right)^2\ge0\)với mọi \(x\)=> (1) luôn đúng ( bạn lí giải tương tự như trên nha)
c)\(-4x^2-4x-2< 0\)
\(\Leftrightarrow-\left(4x^2+4x+2\right)< 0\)
nhân 2 vế với (-1)=> đổi dấu so sánh
\(4x^2+4x+2>0\)
\(\Leftrightarrow\left(2x+1\right)^2+1>0\)
lí giải tương tự như trên
=> đpcm
2) Ta có: \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+1>0\)
Vậy \(x^2+2x+2>0\forall x\in Z\)
3)Ta có: \(x^2-x+1=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{4}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{4}\right)^2+\dfrac{3}{4}>0\forall x\)
Vậy \(x^2-x+1>0\forall x\in Z\)
4)Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
Vì \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2-1< 0\forall x\)
Vậy \(-x^2+4x-5< 0\forall x\in Z\)
Bài 1 và 5 từ từ nha