Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có : \(x\ge0\)
\(\Rightarrow x^3+4x\ge0\)
\(\Rightarrow\)\(x^3+4x+1\ge1\)
có \(3x^2\ge0\) ( vì x >=0)
suy ra
\(x^3+4x+1\ge3x^2\)
a. \(x^2+3x+5\)
\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
=> đpcm
A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0
<=>(x-2)2+4y22+(z-3)2
B) giải
(2X)2+ 2×2X×1 +1 >=0 với mọi X ( (2x+1)2 )
=> (2x+1)2+2 >0
Ta có x2 - 2x + 5
= (x2 - 2x + 4) + 1
= (x - 2)2 + 1 \(\ge\)1 > 0 (đpcm)
b) Ta có : 4x2 + 4x - 3 = (4x2 + 4x + 1) - 4 = (2x + 1)2 - 4 \(\ge\) - 4 (đpcm)
+) Ta có: \(x^2-2x+5=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-1\right)^2+4\ge4>0\forall x\)
Vậy \(x^2-2x+5>0\)
Tập xác định của hàm số
2
Giao điểm với trục hoành (OX)
3
Giao điểm với trục tung (OY)
4
Giới hạn hàm số tại vô cực
5
Khảo sát tính chẵn lẻ của hàm số
6
Giá trị của đạo hàm
7
Đạo hàm bằng 0 tại
8
Hàm số tăng trên
9
Hàm số giảm trên
10
Giá trị nhỏ nhất của hàm số
11
Giá trị lớn nhất của hàm số
Bạn dưới đang giải theo cách làm THPT phải không? Cho mình hỏi \(\infty\)là denta à?
1.
x(x+1)(x2+x+3) = (x2+x)(x2+x+3)
đặt x2+x = t
=> t(t+3)=4
=>t;t+3 thuộc Ư(4)
=> t;t+3 thuộc -1;1-2;2-4;4
tự xét lần lượt các TH nha bạn
a, x2 - 2x + 3 > 0
Xét : VT = x2 - 2x + 1 + 2 = ( x - 1 )2 + 2 .
Có : ( x - 1 )2 \(\ge\) 0 với mọi x \(\Rightarrow\) ( x - 1 )2 + 2 > 0 với mọi x hay
VT > 0 .
Vậy BĐT x2 - 2x + 3 > 0 đúng .
Các câu còn lại tương tự .
Chúc bn học tốt !!!!!!!!