K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

làm tương tự

Chứng tỏ rằng : phân số 5n+3/3n+2 là phân số tối giản với n thuộc N?

bài làm

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

15 tháng 5 2023

Xét12�+1=12�+24−23=12(�+2)−2312n+1=12n+2423=12(n+2)23

⇒12�+12�(�+2)=12(�+2)−232�(�+2)=12(�+2)2�(�+2)−232�(�+2)=6�−232�(�+2)2n(n+2)12n+1=2n(n+2)12(n+2)23=2n(n+2)12(n+2)2n(n+2)23=n62n(n+2)23

Xét232�(�+2)2n(n+2)23ta có:

2�(�+2)⋮22n(n+2)2

=> 2�(�+2)2n(n+2)là số chẵn

mà 23 là số lẻ

⇒232�(�+2)2n(n+2)23Tối giản

⇒6�−232�(�+2)n62n(n+2)23tối giản

Vậy 12�+12�(�+2)2n(n+2)12n+1Tối giản (ĐPCM)

11 tháng 7 2019

Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23

=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)

Ta có: 2n (n+2) chia hết cho 2

=> 2n (n+2) là số chẵn

Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản

=> 6 / n - 23 / 2n (n+2) là phân số tối giản

Vậy 12n+1 / 2 (n+2) là phân số tối giản

11 tháng 7 2019

Mọi người ai trả lời giúp mình với ! @_@

11 tháng 7 2019

Sau một hồi tìm hiểu thì mình đã có lời giải r, bạn nào chưa bt thì tham khảo nhé !

Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23

=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)

Ta có: 2n (n+2) chia hết cho 2

=> 2n (n+2) là số chẵn

Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản

=> 6 / n - 23 / 2n (n+2) là phân số tối giản

Vậy 12n+1 / 2 (n+2) là phân số tối giản

5 tháng 6 2019

Xét\(12n+1=12n+24-23=12\left(n+2\right)-23\)

\(\Rightarrow\frac{12n+1}{2n\left(n+2\right)}=\frac{12\left(n+2\right)-23}{2n\left(n+2\right)}=\frac{12\left(n+2\right)}{2n\left(n+2\right)}-\frac{23}{2n\left(n+2\right)}=\frac{6}{n}-\frac{23}{2n\left(n+2\right)}\)

Xét\(\frac{23}{2n\left(n+2\right)}\)ta có:

\(2n\left(n+2\right)⋮2\)

=> \(2n\left(n+2\right)\)là số chẵn

mà 23 là số lẻ

\(\Rightarrow\frac{23}{2n\left(n+2\right)}\)Tối giản

\(\Rightarrow\frac{6}{n}-\frac{23}{2n\left(n+2\right)}\)tối giản

Vậy \(\frac{12n+1}{2n\left(n+2\right)}\)Tối giản (ĐPCM)

11 tháng 9 2018