Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lưu ý là lớp 6 không cần thiết phải viết dấu "=>".
a. Với số tự nhiên n.
Ta có: \(3n+15⋮n+4\) và \(3\left(n+4\right)⋮n+4\)
=> \(\left(3n+15\right)-3\left(n+4\right)⋮n+4\)
=> \(3n+15-3n-12⋮n+4\)
=> \(\left(3n-3n\right)+\left(15-12\right)⋮n+4\)
=> \(3⋮n+4\)
=> \(n+4\in\left\{1;3\right\}\)
+) Với n + 4 = 1 vô lí vì n là số tự nhiên.
+) Với n + 4 = 3 vô lí vì n là số tự nhiên
Vậy không có n thỏa mãn.
b) Với số tự nhiên n.
Có: \(\left(4n+20\right)⋮\left(2n+5\right)\) và \(2\left(2n+5\right)⋮\left(2n+5\right)\)
=> \(\left(4n+20\right)-2\left(2n+5\right)⋮2n+5\)
=> \(4n+20-4n-10⋮2n+5\)
=> \(\left(4n-4n\right)+\left(20-10\right)⋮2n+5\)
=> \(10⋮2n+5\)
=> \(2n+5\in\left\{1;2;5;10\right\}\)
+) Với 2n + 5 = 1 loại
+) với 2n + 5 = 2 loại
+) Với 2n + 5 =5
2n = 5-5
2n = 0
n = 0 Thử lại thỏa mãn
+ Với 2n + 5 = 10
2n = 10 -5
2n = 5
n = 5/2 loại vì n là số tự nhiên.
Vậy n = 0.
gọi ước chung lớn nhất của n + 1 và 3n + 4 là d
ta có n+ 1 chia hết cho d
3n+ 4 chia hết cho d
ta có 3n + 4 chia hết cho d
ta có n + 1 chia hết cho d
=> 3( n + 1 ) cha hết cho d
=> 3n + 3 chia hết ch d
=> ( 3n + 4 ) - ( 3n + 3 ) chia hết cho d
hay 3n + 4 - 3n - 3
=> 1 chia hết cho d
=> d = 1
ta có ước chung lớn nhất của n + 1 và 3n + 4 là 1
=> n + 1 và 3n + 4 là 2 số nguyên tố cùng nhau
Bạn sai rồi đó
n+1và3n+4 phải thuộc ƯCLN =1
Rồi mới gọi nha
Đó là quan điểm của mik
bài 2 câu b,:Cũng thế nhưng xét trực tiếp 3 số khác:
* Xét: p # 3
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số
Biết mỗi bài đó thôi
Ta gọi UWCLN của 2n-1 và 4n+2 là d
Ta có 2n-1 chia het cho d vậy 4n-2 chia hết cho d
4n+2 chia hết cho d vậy 4n+2-4n-2 chia het cho d
Vậy 4 chia hết cho d nên d=1 để 2n-1/4n+2 là tối giản
Vậy 2n-1/4n+2 là tối giản
đặt 3n+2 và 2n+1 = d
suy ra 3n+2 chia hết cho d ; 2n+1 chia hết cho d
suy ra : (3n+2)-(2n+1) chia hết cho d
suy ra : 2.(3n+2)-3.(2n+1) chia hết cho d
suy ra : 1 chia hết cho d
suy ra d=1
vậy 3n+2 và 2n+1 là hai số nguyên tố cùng nhau
tick cho mình nhé đúng rồi đấy
Gọi UCLN(2n+5, 3n+7) là d
Ta có 2n+5 chia hết cho d
=> 3(2n+5) chia hết cho d
=> 6n+15 chia hết cho d (1)
Ta có: 3n+7 chia hết cho d
=> 2(3n+7) chia hết cho d
=> 6n+14 chia hết cho d (2)
Từ (1) và (2) suy ra: (6n+15) -( 6n+14) chia hết cho d
=> 1 chia hết cho d
=> d=1
=> UCLN(2n+5, 3n+7) =1
Vậy 2n+5, 3n+7 là hai số nguyên tố cùng nhau
=> 3n +4 chia hết cho 3n-3
=> => 3n+4 chia hết cho 3n+4 -7
=> 7 chia hết cho 3n + 4
=> 3n+4 thuộc ước 7 = +- 7, +-1
=> 3n=.............
n=.....
Ta có: 3n+4
=3n-3 +7
Ta thấy:3n-3 chia hết cho n-1=)1 cũng chia hết cho n-1 mà nEN
(=) n-1=0 =) n=1
Vậy n=1
*lưu ý: E là thuộc
Bài giải
Ta có: 3n - 5 \(⋮\)n + 1
=> 3(n + 1) - 8 \(⋮\)n + 1
Vì 3(n + 1) - 8 \(⋮\)n + 1 và 3(n + 1) \(⋮\)n + 1
Nên 8 \(⋮\)n + 1
Tự làm tiếp nha ...
Ta có: 4n + 3 \(⋮\)n - 1
=> 4(n - 1) + 7 \(⋮\)n - 1
Vì 4(n - 1) + 7 \(⋮\)n - 1 và 4(n - 1) \(⋮\)n - 1
Nên 7 \(⋮\)n - 1
.................
gọi UCLN(n+3; 2n + 5) = d
=> n+3 chia hết cho d và 2n + 5 chia hết cho d
=> 2n + 6 chia hết cho d và 2n + 5 chia hết cho d
=> (2n + 6) - (2n + 5) = 1 chia hết cho d => d = 1 nên n+3 và 2n +5 là hai số ntố cùng nhau
gọi UCLN(n+3;2n+5) là d
theo bài ra ta có: n+3=2(n+3)=2n+6 chia hết cho d
2n+5 chia hết cho d
-> (2n+6)-(2n+5) chia hết cho d
-> 2n+6-2n-5 chia hết cho d
-> 1 chia hết cho d
Vậy UCLN(n+3;2n+5)=1 -> n+3 và 2n+5 là 2 số nguyên tố cùng nhau
CHÚC BẠN HỌC TỐT ! :)
suy ra n>0
mà 3n và 4n lớn hơn hoặc bằng 0
suy ra 3n+1 và 4n+1 lớn hơn 0
Vậy n thuộc N sao thì 3n+1 và 4n+1 là 2 số tự nhiên
tui nhanh nhất , nha